
		
			[image: 9788124609880_f.jpg]
		

	
		
			Sanskrit Parsing

			Based on the Theories of Śābdabodha

		

	
		
			Sanskrit Parsing

			Based on the Theories of Śābdabodha

		

		
			 Amba Kulkarni

		

		
			Foreword by

			Rajeev Sangal

			

			
				
					[image:]
				

			

		

	
		
			Cataloging in Publication Data — DK

			[Courtesy: D.K. Agencies (P) Ltd. <docinfo@dkagencies.com>]

			Kulkarni, Amba, author.

			Sanskrit parsing : based on the theories of śābdabodha/

			Amba Kulkarni; foreword by Rajeev Sangal

			pages cm

			Includes passages in Sanskrit (roman).

			Includes bibliographical references and index.

			ISBN 9788124610787

			1. Sanskrit language – Parsing. 2. Parsing (Computer

			grammar) 3. Sanskrit language – Semantics. I. Title.

			LCC PK435.K85 2019 | DDC 491.20285635 23

			ISBN: 978-81-246-1078-7

			First published in India, 2021

			© Indian Institute of Advanced Study, Shimla

			All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage or retrieval system, without prior written permission of both the copyright owner, indicated above, and the publisher.

			The views expressed in this volume are those of the author, and are not necessarily those of the publishers.

			Published by:

			The Secretary

			Indian Institute of Advanced Study

			Rashtrapati Nivas, Summerhill, Shimla - 171 005

			Phones: (0177) 283 1379; Fax: 283 1389

			e-mail: proiias@gmail.com

			Website: www.iias.org

			and

			D.K. Printworld (P) Ltd.

			Regd. office: “Vedaśrī”, F-395, Sudarshan Park

			(Metro Station: ESI Hospital), New Delhi - 110015

			Phones: (011) 2545 3975; 2546 6019

			e-mail: indology@dkprintworld.com

			Website: www.dkprintworld.com

			Printed by: D.K. Printworld (P) Ltd., New Delhi

		

	
		
			Dedicated in memory of my Father and Teacher

			Anantpur Bacce Padmanabharao

			who introduced me to

			the Language of Mathematics and

			the mathematically precise grammar of a language,

			and was a source of inspiration

			for all my endeavours

		

	
		
			Foreword

			SANSKRIT holds an important place in the development of theories of language. First, as a language it is rich in lexical and grammatical derivational processes, dealing with word and morpheme level to sentence level and beyond. Second, theories which were developed to analyse Sanskrit language were themselves rich and awe-inspiring. Their goal was to bring precision and clarity in the utterance which was a unique endeavour of its time in 500 bce. The theories were designed to fix meaning, namely, the meaning of Sanskrit utterance should be clear, precise, and unambiguous for all time to come. Metaphorically, the Sanskrit grammarians and theorists were solving the Y10K or Y100K problem!1

			The study of language played the same role in the Indian civilization as was played by the study of geometry in the Greek civilization. Both encouraged precision of thought and formalization in reasoning. The former was clearly a much tougher domain. The success achieved therein influenced the entire civilization.

			These theories of language influenced the study of language and linguistics across the world. Sanskrit language, its vocabulary, and affixes (pratyaya) were adopted in Tibetan language a millennium earlier. Later, many of the ideas travelled via the Arab world to Europe. In the nineteenth century, Sanskrit as a wonderful language was rediscovered by Europe, particularly the German and later the British scholars. Subsequently, language typological studies (Greenberg 1963) of the West were influenced by theories of language and grammar developed by the Sanskrit grammarians.

			In the twentieth century, Pāṇinian model was discovered and rediscovered in a variety of ways. The ideas of formal generative grammar introduced by Chomsky in the 1950s were not only present in Pāṇini but already developed to a high order (Cardona 1976, 1988). At the same time, the Pāṇinian model was much closer to semantics, with, for example, a developed theory of kāraka (arguments of verbs) and samāsa (compounding). It used “case” or the more generalized concept of vibhakti, anticipating Fillmore (1968) by two millennia, and that too complete with the derivational (generative) process. The idea of Minimalism is inherent in the organization of Pāṇini’s Aṣṭādhyāyī (Deshpande 1985; Kiparsky 1982). What was not realized earlier was that Pāṇini defined operations on a technical representation and through that showed the computational process in derivation of sentences of the language, much like what modern computational linguistics was/is trying to do (Bharati et al. 1995).

			Today, there is a young new technology called Natural Language Processing (NLP) with applications as wide as Machine Translation, Information Extraction and Retrieval, Question–Answering, Dialogue Systems, etc. Language theories from Sanskrit suddenly find a new fertile ground for their application. This makes the book even more timely.

			The Sanskrit theories relate directly with language processing. In this sense, the theories are almost tailor-made for NLP. They deal with information and meaning in a central way. They address the question: How can one go from the information contained in words and their coming together in a sentence, to the meaning or vivakṣā (intension) in the speaker’s mind? Thus, human communication or conveying of meaning comes at the centre.

			The author of this book presents the Indian Grammatical Tradition (IGT) with detailed references very faithfully. Every concept is introduced in the larger setting of information and meaning, is defined referring to the traditional sources, and is connected with the larger task of language processing. In this fashion, the theories become more lucid and useful at the same time, without sacrificing faithfulness.

			After setting the stage in the first chapter, the author introduces the śabda-śakti (word meaning) and śābdabodha (theories of verbal cognition) in Chap. 2. These are central to the theories of language in the IGT. The different types of meaning of a word in IGT are not just intuitively easy to comprehend, but also simplify the theory conceptually. The author’s treatment is scholarly. Theories of śābdabodha show the different types of concerns in language analysis, from the perspectives of Vaiyākaraṇas (Grammarians), Naiyāyikas (Logicians), and the Mīmāṁskas (Discourse/Pragmaticians).

			Śābdabodha in IGT contains the key elements for a program in Computational Linguistics. These are ākāṅkṣā (expectancy), sannidhi (planarity), and yogyatā (congruity). They allow linguistic data to be prepared and parsing to be done elegantly. My hope is that in time to come, these will permit the integration of theory-based approaches with theory-bereft approaches (viz. Statistical and Neural-based NLP). The theory will bring out the essence so that it can be handled by machine almost directly. For the phenomena, where the required concomitant knowledge is very hard to compile, it can be left for the “theory-bereft” approaches. Finally, the author presents the algorithms for parsing which is a result of complementing the traditional theories with modern efficient algorithms.

			The strength of the book lies in its faithful and clear presentation of the theories of language from IGT, the identification of the key elements, and finally their use in constructing efficient algorithms. The book not only documents the saliant pieces of work carried out over the last quarter century under Computational Paninian Grammar (CPG), but provides the first comprehensive exposition of the ideas involved. It will serve as an important milestone of achievements so far.

			Hopefully, the book will also open up the frontier of applying concepts from Sanskrit parsing to modern Indian languages on a bigger scale, and indeed to all languages of the world.

			References

			Bharati, Akshar, Vineet Chaitanya and Rajeev Sangal, 1995, Natural Language Processing: A Paninian Perspective, New Delhi: Prentice Hall of India.

			Cardona, George, 1976, Panini: A Survey of Research, The Hague: Mouton & Co.

			———, 1988, Panini: His Work and Its Traditions, vol. 1: Background and Introduction, Delhi: Motilal Banarsidass.

			Deshpande, Madhav M., 1985, Ellipses and Syntactic Overlapping: Current Issues in Paninian Syntactic Theory, Pune: Bhandarkar Oriental Research Institute.

			Fillmore, Charles J., 1968, “The Case for Case”, in Universals of Linguistic Theory, ed. E. Bach and R.T. Harms, pp. 1-88, New York: Holt Rinehart and Winston.

			Greenberg, Joseph, 1963, Universals of Language, Cambridge, MA: MIT Press.

			Kiparsky, P., 1982, Some Theoretical Problems in Pāṇini’s Grammar, Poona: Bhandarkar Oriental Research Institute.

			Rajeev Sangal

			IIIT Hyderabad 					

			24 April 2019

			

			
				
					1		Compare this with the Y2K problem: Computer software needed to be fixed to remove ambiguity, caused due to use of only the last two digits of a year. The problem appeared or would have appeared in the year 2000, within a span of mere forty years of the software being written. The contrast between, forty years and 10,000 years (Y10K) is too stark not to be noticed.

				

			

		

	
		
			Preface

			THIS book is an outcome of my fellowship at the Indian Institute of Advanced Study, Shimla during 2015-17. I was always fascinated by the rich Indian grammatical tradition, especially the minute attention paid to the information coding in a language string. In 2006 when I joined the Department of Sanskrit Studies at the University of Hyderabad, I decided to restrict my work to the Sanskrit Computational Linguistics, taking as much help as possible from this rich tradition. Immediately after developing a morphological analyser and a sandhi splitter, I decided to venture into the development of a sentential parser. While all the machine translation systems used several other modules such as part of speech (POS) tagger and chunker before calling the parser, I decided to call the parser right after the morphological analyser. The main reason behind this decision was that when I looked at various Indian literature there was no discussion on any kind of POS tagger or chunker. However there were discussions on various factors that help in verbal cognition. The main focus of all these discussions was the ﬂow of information in a sentence. And this was essentially what I was looking for in order to build automatic language processors. So I decided to follow the tradition as closely as possible in the development of my parser, even at the risk of going against the current trends of using machine-learning algorithms, which I believe deserve a place only when one exhausts almost all the information sources discussed in Indian traditional grammar.

			The ﬁrst parser was developed in 2009 by my student N. Shailaja as a part of her MPhil dissertation. She used C Language Integrated Production System (CLIPS),1 a tool for building an expert system, for writing her rules. This ﬁrst parser was further enhanced by Sheetal Pokar, Pavankumar Satuluri and Madhvachar, with funding from the Department of Information Technology (DeitY), under its Technology Development for Indian Languages (TDIL) programme. This parser had two components. The ﬁrst one was formation of a graph, for which we used the CLIPS environment, and the second part was a constraint solver. This constraint solver was written in MINION.2 I noticed that the constraint speciﬁcations represented in matrix form for the MINION constraint solver resulted in a large-sized sparse matrix, which slowed down the performance of the system. This prompted me to re-examine the design of the constraint solver which resulted in a graph-based depth ﬁrst traversal algorithm implemented in Perl.3 Though I had a working module for a morphological analyser, the coverage of the derivational morphology was not satisfactory. Gérard Huet’s “The Sanskrit Heritage Site”4 had good coverage of morphology as well as the best implementation of a sandhi splitter. Therefore I thought of taking advantage of existing resources instead of improving my own morphological analyser and sandhi splitter. When I started interlinking this module with the segmenter of the Heritage site, I thought it would be better to implement my parser in OCaml5 (in which the Heritage platform is developed) for better integration. I also noticed that the depth ﬁrst traversal algorithm written in Perl could be improved further by noting down the compatibility conditions in the beginning. This observation along with the functional aspect of OCaml resulted in the redesigning of my algorithm further so as to make it natural from the functional programming point of view. And this was the fourth avatāra of the parser. My student Sanjeev Panchal encoded various Pāṇinian sūtras in OCaml, while I wrote the constraint solver to extract dependency tree from a graph following the edge-centric binary join.

			The development of these parsers is largely inﬂuenced by the theories of śābdabodha (verbal cognition). These theories discuss in great detail the information encoding in a language string. They provided me answers to questions such as where is the information encoded, how much information is encoded, what do the words signify, what role do various signiﬁcative powers of a word have in the understanding of a text and so on. Different schools, in Indian tradition, have discussed these questions. The major challenge before me was to decide which school to follow. Second, the examples discussed were few in number, often just one or two. It was therefore challenging for me to understand their stand based on these examples and the commentaries on these texts. I followed two different approaches. When I knew of a relevant concept discussed in the Śāstras, I would try to understand it and then use it appropriately to solve the problem. When I did not know where to look for the solution, I would ﬁrst arrive at the solution on the basis of empirical evidence and then look for the theoretical support for it in the Śāstras. In the case of ākāṅkṣā and sannidhi, I followed the ﬁrst approach. But in the case of yogyatā, since I could ﬁnd hardly one or two pages of material on yogyatā with only one stock example, I, with the help of my student Sanjeev, came up with observations based on the data. These observations provided us clues for what and where to look for in the Śāstras. Of course whatever approach we followed we tested our implementation on a corpus, drawn from various classical Sanskrit texts. In all the grammatical texts which we referred to, what I found useful was that the theories of verbal import were objective. And it is this objectivity that guarantees automatic processing.

			Students of Sanskrit, especially of Vyākaraṇa, Nyāya and , hear that the theories of śābdabodha are useful computationally. But the lack of any text describing the importance of śābdabodha leaves them clueless. During the last few years, I travelled all over India delivering lectures on the importance of śābdabodha from computational point of view, and I found that it generated a new enthusiasm among Sanskrit students. This also made me think over preparing a short monograph describing this importance in detail. I also met several teachers who were interested in offering a course on the contemporary relevance of Indian theories of śābdabodha, but due to lack of any teaching material, they could not.

			On the other hand there are students and researchers working in the ﬁeld of computational linguistics focusing on Indian languages. There are very few grammar books for Indian languages, and hardly any of these is as complete as Pāṇini’s grammar for Sanskrit. Since most of the Indo-Aryan languages have originated from Sanskrit, Pāṇini’s grammar deﬁnitely provides good insights for handling various linguistic problems of them. After the book by the Akshar Bharati group Natural Language Processing: A Paninian Perspective, though much research took place in this ﬁeld, no textbook was produced that can help a student. Texts by Kunjunni Raja, B.K. Matilal, Veluri Subba Rao, Subramania Iyer, to name a few, written from the perspective of providing an overview of the contribution of Indian grammarians, are useful for researchers. But for students of computational linguistics, they do not provide any direct insights. There are several excellent translations of the original work, such as the one by Mahāmahopādhyāya Ganganath Jha of the Śābara-Bhāṣya on Mīmāṁsā sūtras, or the translations of Patañjali’s Mahābhāṣya, and a lot of secondary literature on these topics. But all this material is beyond the reach of the students of computational linguistics since these texts are written from a different perspective.

			With these two strata of readers in mind, I decided to write down my understanding of these theories from a computational viewpoint. This book is the result of that exercise. The ﬁrst chapter provides an overview of various computational tools for Sanskrit and then introduces the main theme of this book, viz. the dependency parsing. The second chapter introduces the Indian theories of word meaning and sentence meaning brieﬂy, discussing various conditions of knowing the meaning of a sentence. The third chapter is my main contribution which provides interpretation of the concepts discussed in the second chapter from the computational perspective and provides computational models to implement them. The fourth chapter discusses the three different dependency parser algorithms I built, with the help of my students, each one being an improvement over the previous one.

			I have tried to provide a glimpse of parallel concepts employed in the contemporary computational linguistics so that the students of linguistics in general and of computational linguistics in particular should ﬁnd it easy to connect the concepts presented here with what they are familiar with. At the same time, the students of Sanskrit grammar should ﬁnd the third chapter interesting where they would know the nature of problems a computational linguist is facing and see the practical demonstration of application of the Indian theories to solve the contemporary problems. I hope this book will provide conﬁdence to the students and researchers from both the disciplines to access the relevant material on the other discipline.

			What I have presented is my understanding of the concepts in the Indian grammatical tradition. If there are any errors in my understanding, or errors in the presentation, I am solely responsible for them. I would, in such cases, like to know about them so that I can rectify them and correct my understanding. I hope this book will be useful to students of computational linguistics and also Sanskrit students to understand the rich Indian grammatical tradition and its relevance to the ﬁeld of computational linguistics.

			

			
				
					1			http://www.clipsrules.net/

				

				
					2		http://www.constraintmodelling.org/minion

				

				
					3		http://www.perl.org

				

				
					4		http://sanskrit.inria.fr

				

				
					5		https://ocaml.org

				

			

		

	
		
			Contents

			Foreword	

			Preface	

			Acknowledgements

				1.	Introduction	

			1.1 Sanskrit Computational Tools: Current Status	

			1.1.1 Word Generators	

			1.1.2 Word Analysers	

			1.1.3 Lexical Resources	

			1.1.4 Tools Based on Data-driven Approaches	

			1.2 Sanskrit Parser	

			1.2.1 Constituency Structure	

			1.2.2 Dependency Structure	

			1.2.3 Parsing and Theories of Verbal Cognition	

				2.	Understanding Texts : Indian Theories	

			2.1 Word Meaning	

			2.1.1 Abhidhā (Primary Denotation)	

			2.1.2 Lakṣaṇā (Implication)	

			2.1.3 Vyañjanā (Suggestion)	

			2.2 Necessary Conditions for Verbal Cognition	

			2.2.1 Ākāṅkṣā (Expectancy)	

			2.2.2 Sannidhi (Proximity)	

			2.2.3 Yogyatā (Congruity)	

			2.2.4 Tātparya (Purport)	

			2.3 Vākyārtha (Sentential Meaning)	

			2.4 Structure of Verbal Cognition	

			2.5 Understanding Texts: Commentary Tradition	

			2.5.1 Canonical word order	

			2.6 Conclusion	

				3.	Śābdabodha Theories and Sanskrit Parsing	

			3.1 Ākāṅkṣā: Establishing Relations	

			3.1.1 Where is the Information?	

			3.1.2 What kind of Information?	

			3.1.3 Repository of Relations	

			3.1.4 How is the Information Encoded?	

			3.2 Sannidhi: Planarity Constraint	

			3.2.1 Projectivity Principle	

			3.2.2 Weak Non-projectivity (Planarity)	

			3.2.3 Empirical Evaluation	

			3.2.4 Conclusion	

			3.3 Yogyatā: Semantic Restrictions	

			3.3.1 Selection Restriction	

			3.3.2 Śabda-śakti (Level of Signiﬁcation)	

			3.3.3 Yogyatā as a Filter	

			3.3.4 Modelling Yogyatā	

			3.3.5 Evaluation	

			3.4 Conclusion	

				4.	Sanskrit Parsing	

			4.1 Introduction	

			4.1.1 Dependency Parse Structure	

			4.2 Design of a Parser	

			4.2.1 Establishing Directed Edges	

			4.2.2 Deﬁning the Constraints	

			4.3 Solving the Constraints	

			4.3.1 Constraint Satisfaction Problem	

			4.3.2 Vertex-centric Traversal	

			4.3.3 Edge-centric Binary Join	

			4.4 Compact Display of Multiple Solutions	

			4.5 Conclusion	

				5.	Conclusion	

			Appendices	

				A.	Evaluation of Parsers : Various Parameters	

			Measure of Correctness of Parse	

			A.1 Precision and Recall	

				B.	Classiﬁcation of Lakṣaṇā	

				C.	List of Relations in Pāṇinian Grammar	

				D.	List of Relations Used in the Sanskrit Parser	

			Glossary	

			Bibliography	

			Index	

		

	
		
			Acknowledgements

			I WAS very fortunate to be a fellow at the Indian Institute of Advanced Study, Shimla during 2015-17. At the outset, I thank the selection committee and the then Director Prof. Chetan Singh for giving me an opportunity to work in this prestigious Institute at the feet of the Himalayas. The conducive atmosphere in the Institute for carrying out research, the serene skies, the evening sunsets and the dense pine and devadāra trees touching the skies provided me the right kind of environment to carry out my work without any disturbances. Thanks are also due to my parent institute, the University of Hyderabad, for granting me leave for the above period.

			Some of the material in this book was earlier published in the form of conference/seminar papers in their proceedings, or as a journal article. I thank the publishers for giving me permission to use the relevant parts in this book, with or without modiﬁcation. The publications from which I have used the material are the following:

			1. Kulkarni, A., S. Pokar and D. Shukl, 2010, “Designing a Constraint Based Parser for Sanskrit”, in Fourth International Sanskrit Computational Linguistics Symposium, ed. G.N. Jha, pp. 70-90, Springer-Verlag, LNAI 6465.

			2. Bharati, A. and A. Kulkarni, 2010, “Information Coding in a Language: Some Insights from Paninian Grammar”, Dhīmahi, Journal of Chinmaya International Foundation Shodha Sansthan, I(1): 77-91.

			3. Kulkarni, A., 2013, “A Deterministic Dependency Parser with Dynamic Programming for Sanskrit”, in Proceedings of the Second International Conference on Dependency Linguistics (DepLing 2013), pp. 157-66, Prague, Czech Republic: Charles University in Prague Matfyzpress Prague Czech Republic.

				4.	Kulkarni, A. and K.V. Ramakrishnamacharyulu, 2013, “Parsing Sanskrit Texts: Some Relation Speciﬁc Issues”, in Proceedings of the 5th International Sanskrit Computational Linguistics Symposium, ed. M. Kulkarni, New Delhi: D.K. Printworld.

				5.	Kulkarni, A.P., P. Shukla, P. Satuluri and D. Shukl, 2015, “How Free Is the ‘Free’ Word Order in Sanskrit”, in Sanskrit Syntax, ed. P. Scharf, pp. 269-304, The Sanskrit Library.

				6.	Sanjeev, P. and A. Kulkarni, 2018, “Yogyatā as an Absence of Incongruity”, in Computational Sanskrit & Digital Humanities, ed. H. Gérard and A. Kulkarni, New Delhi: D.K. Publishers.

			I thank all my fellow friends at the Indian Institute of Advanced Study, who participated in my presentations and gave valuable suggestions concerning my work. Special thanks are due to Dr Terry Varma, Prof. Madhavan and Dr Lalitha Raja who read earlier drafts of my manuscripts meticulously, and discussed various aspects, to Prof. Nirmal Sengupta and Prof. Vijay Varma for valuable discussions on related topics, and to Amit Datta and Ayswarya Sankaranarayanan, who shared my study at the Institute, for exposing me to the wonderful creative world of artists.

			I also thank the anonymous reviewers who reviewed my intermediate and the ﬁnal drafts of the manuscript and provided useful feedback on the manuscript.

			I thank my teachers, colleagues, friends and students who took trouble to go through my draft manuscript and provided useful suggestions. While there is a danger of leaving somebody out, I still would like to put on record the names: Prof. Rajeev Sangal, Prof. K.V. Ramakrishnamacharyulu, Prof. B.N. Patnaik, Prof. Korada Subrahmanyam, Prof. Peter Scharf, Prof. Dipti Misra Sharma, Prof. Srinivas Varakhedi, Prof. Rajaram Shukla, Prof. Tirumala Kulkarni, Prof. Lalit Kumar Tripathi, Dr Sukhada, Dr Arjuna and Sanjeev Panchal. I thank my research assistants and students Dr Shailaja, Dr Sheetal Pokar, Dr Pavankumar Satuluri, Dr Madhvachar for implementation of earlier versions of ākāṅkṣā module and Sanjeev Panchal for the current implementation of both the ākāṅkṣā and yogyatā. Thanks are also due to Dr Preeti Shukl and Dr Pavankumar Satuluri who worked with me on the problem of word order and sannidhi violation in Sanskrit.

			Prof. Vineet Chaitanya deserves special mention. Most of the concepts discussed here have either originated from him, or he was the sounding board for them. Discussions with him on various aspects brought clarity to my thoughts. Prof. Gérard Huet, not only went through my ever-evolving manuscript at several times, but also raised several intriguing questions which helped me broaden my vision and improve the implementation of the software as well as the content of the manuscript.

			I thank Prof. Rajeev Sangal, my teacher and the leader of the computational linguistics community in India, who along with Prof. Vineet Chaitanya, is pioneer in demonstrating the utility of the Indian grammatical theories for Natural Language Processing and in particular Machine Translation, for writing the foreword.

			I also thank Shri Susheel Mittal ji of the D K Printworld for readily accepting to print the book and also for providing all the necessary assistance.

			Finally, I thank my sons Achyut and Kedar who kept me free from any botherations and always provided the needed emotional support for carrying out my work with more enthusiasm.

		

	
		
			1

			Introduction

			LANGUAGE technology plays an important role in the digital era. The last half century has seen an exponential growth in the ﬁelds of computational linguistics and language technology. Software related to machine translation, information retrieval, information extraction, search engines, question answering systems, etc. are available and constantly being enhanced. With mobile phones becoming as powerful as computers, mobile apps are being developed in several language-related areas including language learning and language games. Such tools are not only useful for modern languages, but also play a crucial role in making classical language texts easily accessible. For example, the Perseus Digital Library Project1 provides access to a digital corpus of classical languages such as Latin, Greek and Arabic, with support for linguistic analysis and contextual reading. Sanskrit has received good attention from scholars as well as enthusiasts from all over the world. In addition to several websites serving as repositories of Sanskrit texts, in the ﬁeld of computational linguistics we ﬁnd individual as well as collaborative efforts during the last two decades with their linguistic software available online for public usage.2

			While earlier efforts towards the development of many such linguistic tools were based on linguistic theories specially developed from the computational perspective, the last decade has seen the use of machine-learning techniques, deep-learning and big data replacing linguistic theories. The main reason behind the preference for machine learning and similar techniques over pure linguistic approaches is the cost involved in developing the language resources needed for disambiguation at various levels, and the complexity involved in the representation of such knowledge. Machine-learning and deep-learning techniques with the help of big data can capture the nuances of languages very effectively and in recent years have shown promise in the ﬁeld of word-sense-disambiguation, an important module in any machine-translation system. But the disadvantage of these techniques is that whatever a machine learns cannot be controlled or modiﬁed or improved manually. In order to improve the performance of a machine, we end up needing more actionable, relevant and smart data that help reduce the unreliability.

			When it comes to classical languages such as Sanskrit, we deﬁnitely want our software to produce “reliable” and “faithful” translations as well, in addition to quick translations which may be useful to get a rough idea about what the text in the source language is. Quick translations help one to judge the relevance of the text one wants to get translated before venturing into getting it translated manually. Faithful translator or an accessor, on the other hand, provides complete access to the original text, giving one conﬁdence about the reliability of the translation. Thus, on the one hand, for classical languages we need a machine-translation system developed using fast, actionable, reliable and smart (FARS) data to provide a quick gist and on the other hand, we need complete and faithful access to the original text.

			1.1 Sanskrit Computational Tools: Current Status

			Sanskrit assumes a unique status when it comes to the ﬁeld of linguistic analysis with its more than 2,500-year long and still extant grammatical tradition. Sanskrit grammar enjoys a similar status in India as mathematics in the West. Pāṇini’s grammar is an important milestone in the Indian grammatical tradition. Unlike grammars of other languages, it is almost complete and, together with the theories of śābdabodha (verbal understanding), this grammar provides a complete system for language analysis as well as generation. It is therefore natural to explore the use of these theories for building computational tools for language analysis that can provide complete and faithful access to the original Sanskrit texts. At the same time, we also see tools that are developed with state-of-the-art technology such as machine learning. In what follows, we give a brief summary of the various efforts in the development of Sanskrit computational tools, both grammar-based as well as non-grammar-based or data-driven.

			1.1.1 WORD GENERATORS

			In the recent past there have been several efforts to implement the rules of the Aṣṭādhyāyī computationally simulating the process of rule selection and the derivation process in the Aṣṭādhyāyī by Goyal, Kulkarni and Behera (2009), Misra (2009), and Subbanna and Varakhedi (2009, 2010). Pavankumar Satuluri (2016) developed a compound generator following the procedure described in the Aṣṭādhyāyī. He was not only interested in being faithful to the derivation process as described in the Aṣṭādhyāyī, but was also interested in its computational complexity. Krishna and Goyal (2016) describe a taddhita (secondary derivatives) generator that represents a sūtra from the Aṣṭādhyāyī as an object. They discuss the problems related to multiple inheritance and conﬂict resolution techniques. Patel and Katuri (2016) describe an “NLP order of sūtras” and implement the subanta (nominal inﬂections) generation rules as arranged in the Siddhāntakaumudī. In a similar effort, Swami Shivamurthy Taralabalu3 has developed a noun generator. Scharf et al. (2015) programmatically determine ātmanepada vs parasmaipada verbal terminations. In the recent developments, Sohoni and M.A. Kulkarni (2018) have developed a simulator where they translate each Pāṇinian sūtra as a Haskell module. In another effort, Sarada Susarla, Tilak Rao and Sai Susarla (2018) have developed an interpreter for sūtras in the Aṣṭādhyāyī, where each sūtra is represented as a record in JSON format. Scharf (2009a) has examined how to model various features of Pāṇinian grammar. Recently Scharf (2016) described an XML annotation scheme to represent the interpretation of sūtras in an unambiguous way so that one can translate them into a computer program to build a simulator. All these efforts tried to follow the grammar in toto, and for some of them, the motive behind the development of this software was also to interpret Pāṇini’s grammar from the computational point of view and implement them programmatically.

			There are some other efforts where we notice a deviation from Pāṇini in the implementation of generators for Sanskrit words. The Heritage engine developed by Huet (2016) is one such instance, where he is interested in representing the tight coupling of word and meaning in the derivation process, but his system deviates from Pāṇini in the implementation. Kulkarni and Shukl (2009) follow a paradigm model, used in pedagogy, for noun generation. For verb generation they use a ready-made verb-form tables, and an efficient ﬁnite state transducer4 is used for computational processing.

			1.1.2 WORD ANALYSERS

			A word, for computational purpose, is deﬁned as a string of characters separated by white spaces. In Sanskrit, due to the inﬂuence of oral tradition, the consecutive words are joined together. At the join, the phonemes, optionally, undergo a change termed as sandhi.* So the task of word analysers, in the case of Sanskrit, is twofold. The ﬁrst task is to identify the word boundaries, and undo the sandhi operation, and the second task is to analyse such split words.

			A generative grammar of any language provides rules for generation. For analysis, we require a mechanism by which we can use these rules in a reverse way. The reversal in some cases is easy and also deterministic. For example, subtraction is an inverse operation of addition and is deterministic. The reversal, however, may not always be deterministic. Let us see a simple example of non-deterministic reversal with which all of us are familiar. The multiplication tables or simple method of repetitive addition provides a mechanical way for multiplication. Given a product, to ﬁnd its factors is a reverse process. Multiplication of two numbers, say 4 and 3, produces a unique number 12. But its decomposition into two factors is not unique. 12 may be decomposed into two factors as either {6, 2} or {4, 3} in addition to a trivial decomposition {12, 1}. Thus the inverse process may at times involve non-determinism. Depending upon the context, if one factor is known, the other factor gets ﬁxed. For example, if you are interested in distributing 12 apples among 2 children, then one of the factors being 2, the other factor, viz. 6, is determined uniquely.

			This is true of a generative grammar as well. To give an example, look at the following two sūtras of Pāṇini.

				•	anabhihite (A 2.3.15)

				•	kartr̥karaṇayos tr̥tīyā (A 2.3.18)

			These two sūtras together, in case of a passive voice (karmaṇi prayogaḥ), assign a third case suffix (vibhakti) to both the kartr̥ (agent) as well as karaṇa (instrument) kāraka. Here is an illustrative sentence:

			Skt: rāmeṇa bāṇena vāliḥ ahanyata। (1)

			Gloss: By_Rāma with_an arrow Vāli was_killed.

			Eng: Vāli was killed by Rāma with an arrow.

			Now, when a hearer (who knows Sanskrit grammar) listens to this utterance, he notices two words ending in the third case suffix and that the construction is in the passive voice. But unless he knows that rāma (Rāma) is the name of a person and bāṇa (arrow) is used as an instrument, he may fail to get the correct reading. In the absence of such “extralinguistic” knowledge, there are two possible interpretations, viz. either rāma is kartr̥ and bāṇa is karaṇa, or bāṇa is kartr̥ and rāma is karaṇa leading to non-determinism.6

			We come across non-determinism with the process of segmentation as well. As mentioned earlier, in the case of Sanskrit compound words, sandhi between the components of a compound is mandatory. Further, there is a tendency to write Sanskrit text as a continuous string (saṁhitāpāṭha), due to the inﬂuence of an oral tradition. During the sandhi process, the phonemes at the juncture undergo changes. And in order to process such a sandhied text, one needs to split the string into meaningful components. Pāṇini describes rules for the formation of sandhi when two phonemes pronounced are in proximity. These rules are for the generation of a sandhied string. Segmentation is the reverse process, and this also involves non-determinism. For example, the compound word rāmālayaḥ results from a sandhi of two components rāma and ālayaḥ. But since ā may also result from the sandhi of two as, or two ās, or one a and another ā, there are four different ways a word can be split at ā. This results in multiple possible splits, with a constraint that each such split component should be meaningful.

			Huet (2002) extends the ﬁnite state technology to represent sandhi transitions on a decorated trie where the nodes are decorated with the possible morphological analysis and optionally with the information of transitions due to sandhi. Such a decorated trie structure is used for segmentation. Goyal and Huet (2013) further provided an interactive user interface to select the correct segmentation in a given context. This interface is an excellent example of sharing the load between man and machine. The machine carries out part of the task – the task of splitting a given text at all possible places taking into account the sandhi rules and the constraint that it splits the string only into morphologically valid strings. But since a machine does not have the knowledge of word meanings, the task of deciding whether the split is meaningful or not is left to a human being who is reading/accessing the text. Anil Kumar, Mittal and Kulkarni (2010) built a segmenter that prioritizes the possible solutions on the basis of statistical evidence. Both Huet and Anil Kumar use a word analyser to prune out unmeaningful splits. These word analysers provide all possible analyses. For building the morphological analysers ﬁnite state transducers are used which provide the best performance.

			1.1.3 LEXICAL RESOURCES

			Several lexical resources for Sanskrit have been developed and are being developed. The knowledge structure of the Amarakośa was explored by Nair (2011) and linked with the Vaiśeṣika ontology.7 SanskNet8 – a WordNet for Sanskrit – was developed at IIT Bombay under the leadership of Malhar Kulkarni (Kulkarni et al. 2010). Scharf (2009b) determined the canonical forms of the verbal roots expected by Pāṇini in the Aṣṭādhyāyī. He made the dhātupāṭha as commented upon in the Mādhavīya Dhātuvr̥ttisaiddhāntikānukramaṇī, an important work describing the verbal roots, their forms, accents and meanings, available online.9 A concordance10 of three major dhātuvr̥ttis – Mādhavīyadhātuvr̥tti, Kṣīrataraṅgiṇī and Dhātupradīpa – was produced by Shailaja (2014).

			1.1.4 TOOLS BASED ON DATA-DRIVEN APPROACHES

			All these efforts are grammar-based and make only superﬁcial use of corpus as well as statistical and machine-learning methods. Among the use of machine-learning approaches and use of corpus statistics the work by the German scholar Hellwig (2009b, 2010) is worth mentioning. He built n-grams11 of inﬂected forms from a Sanskrit corpus, and used these n-grams to develop a part of speech (POS) tagger and has demonstrated very promising results. He also provides the Digital Corpus of Sanskrit12 with a search facility for collection of lemmatized Sanskrit texts. This website also provides automatic segmentation and tagging of Sanskrit texts. Hellwig (2009a) described a statistical parser for analysing Sanskrit. There were a few other efforts also that use the existing corpus for improving the segmented output. Natarajan and Charniak (2011) proposed sandhi splitting based on the Dirichlet process and obtained better results than Mittal (2010) who used Optimality Theory by deﬁning the posterior probability function to choose the most probable split among the valid splits. Anil Kumar (2012) developed a compound word analyser for Sanskrit that shows possible constituency analyses and possible compound type(s). He uses both grammatical rules as well as makes use of corpus for prioritizing the solutions based on statistical evidences, and posterior probability.

			The recent trend is to use the deep learning and neural network models for automatic segmentation. Krishna, Satuluri and Goyal (2017) proposed the ﬁrst model that performs both word segmentation and morphological analysis for Sanskrit. This was further improved by Reddy et al. (2018) with a seq2seq model with attention.

			1.2 Sanskrit Parser

			Parsing unfolds a linear string of words into a structure which shows explicitly the relations between words. This structure is dictated by the grammar. There are two distinct ways to look at a language string from the structural point of view: as a constituency structure and as a dependency structure.

			1.2.1 CONSTITUENCY STRUCTURE

			A constituency structure shows how a sentence is constituted by combining the words in it. A constituency is a relation between a constituent and the larger unit that it is part of. The grammar that describes the structure of a sentence in terms of its constituents organized hierarchically is called a constituency grammar or a phrase structure grammar. Figure 1.1 shows the constituency structure13 of a sentence “The king gives a cow to a brāhmaṇa” as a parse tree.

			A constituency parse tree consists of two types of nodes: terminal and non-terminal. The terminal nodes, which are the leaf nodes of a tree, correspond to the words in a sentence. All other nodes are the non-terminal nodes. The non-terminal nodes immediately above the leaf nodes represent the POS category of the word at the leaf node. One or more POS nodes get connected into phrasal nodes. These phrasal nodes correspond to constituent phrases.

			Thus V is the POS of “gives” and PP is the prepositional phrase comprising to a “brāhmaṇa”. The constituency parse structure is sometimes also represented as a bracketed expression. The bracketed expression for the above sentence is

			[[The king]NP [gives [a cow]NP [to a brāhmaṇa]PP]VP]S

			
				
					[image:]
				

			

			For positional languages such as English the constituency tree is very important as it shows the syntactic structure of a sentence and the boundaries of phrases constituting various semantic units.

			The structure of Sanskrit compounds can best be described by a constituency tree. Sanskrit compounds are typically binary and recursive in nature. They can go any level deep. Figure 1.2 shows the constituency structure of the following compound from the Pañcatantra.

			Skt: pravara-mukuṭa-maṇi-marīci-mañjarī-caya-carcita-caraṇa-yugalam।14

			Gloss: Excellent-crown-gem-radiant-cluster-heap-cover-foot-pair.

			Eng: The one whose feet are covered by the heap of a cluster of radiance from the gem of the excellent crown.

			
				
					[image:]
				

			

			This compound has nine components. The intermediate nodes and the root nodes of the compound structure, in fact, do not stand for the phrase label, as in the constituency tree of an English sentence, but these intermediate labels, viz. T6, T7,15 etc. stand for the type of compound.16 The type of a compound shows the dependency relation between the two heads. For example, the relation T6 between caraṇa (foot) and yugalam (pair) stands for a genitive relation, giving the meaning “pair of foot”.

			1.2.2 DEPENDENCY STRUCTURE

			For the sentential parse of Sanskrit sentences, such a constituency parse makes little sense. Sanskrit is morphologically rich and to a large extent has free word order. There is also a strong tradition of Pāṇinian grammar for Sanskrit, which happens to be the oldest dependency grammar. In dependency grammar, constituency structure does not have any role. On the other hand, the grammatical relations between the words are important. A dependency parse shows the dependency relations between various words in a sentence. The dependency relations are directional from the viśeṣya (head/modiﬁed) to the viśeṣaṇa (dependents/modiﬁers). These relations are also labelled. The label denotes the role of the dependent node with respect to the head node. The head and the dependents are also termed modiﬁed and modiﬁer respectively. In every sentence, there is one morpheme which is the head of the entire sentence. This is called the root of the dependency structure. It is called mukhya-viśeṣya (chief qualiﬁcand) in Indian grammar. The dependency parsed structure is represented as a tree and hence the dependency parse is also called a dependency tree. The dependency tree is a directed, labelled acyclic graph.

				1.	It has a single node called a root node.

				2.	All nodes except the root node have exactly one incoming arrow.

				3.	The root node does not have any incoming arrow.

			The structure of a Sanskrit sentence is best represented by a dependency tree (see Chap. 4 for detailed reasoning).

			
				
					[image:]
				

			

			A dependency parse of

			Skt: rājā viprāya gām dadāti. (2)

			Gloss: King {nom.} brāhmaṇa {dat.} cow {acc.} give {pr. tense, 3p, sg}

			Eng: The king gives a cow to a brāhmaṇa.

			is shown in fig. 1.3 as a dependency tree. The relation labels kartr̥ (agent17), karman (goal) and sampradāna (beneﬁciary, recepient) are the semantic relations expressing the role of the substantives in relation to the verb. The root of the parse tree here is the main verb.18

			The importance of dependency trees over the constituency trees was well recognized by the computational linguistic community. The dependency analysis is preferred over the constituency not only from the evaluation point of view (Lin 1998) but also because of its suitability (Marneffe et al. 2006) for a wide range of NLP tasks such as machine translation, information extraction, question answering and logical deductions and inferences. Naturally, we notice that during the last decade there is an upsurge in the use of dependency structure in computational parsing of several languages such as English, French, Chinese and Japanese. The parsed structure of the sentence, “The king gives a cow to a brāhmaṇa”, following Universal Dependencies,19 is shown in fig. 1.4.

			The ﬁrst parser for Sanskrit was built by Bhattacharyya (1986) as a part of his MTech thesis at IIT Kanpur in 1987 using integer programming. Later, in the early 1990s, the team led by Lakshmitatachar (Ramapriya and Saumyanarayana 2001) developed a generator that could generate the expressions of verbal cognition following different Indian schools, for Bhandarkar’s Sanskrit primer, at the Academy of Sanskrit Research in Melkote. Huet (2007, 2009) has a shallow parser that uses the minimal information of transitivity of a verb as a subcategorization frame and models it as a graph-matching algorithm. The main purpose of this shallow parser is to ﬁlter out non-sensical segmentations.

			
				
					[image:]
				

			

			1.2.3 PARSING AND THEORIES OF VERBAL COGNITION

			In order to develop a dependency parser, we need to know answers to the following questions:

			1.	How does one know which word relates to which other in a sentence?

				2.	Where is the information of word relations encoded?

				3.	How is this information encoded?

				4.	What is the semantics associated with such a relation?

				5.	Is there any repository of relation names?

				6.	Do the word meanings have any role to play in establishing the relations?

				7.	Does the relation between the words have any role in the decision of the word meaning?

				8.	What is the expressive capacity of a word?

			Answers to these questions are found in the Indian theories of verbal cognition. The dependency grammar of Pāṇini was further strengthened by the development of theories of verbal import that provide the structure of sentential meaning mentioning minute details such as what are the sources of information and how the information ﬂows in a sentence. The theories discuss the importance of three factors, viz. ākāṅkṣā (expectancy), yogyatā (mutual congruity) and sannidhi (proximity) as essential factors for any verbal understanding. Further these theories also deal with the question of what the meaning of “meaning” is? Three levels of signiﬁcation of words, viz. abhidhā (primary), lakṣaṇā (secondary) and vyañjanā (suggestive) are suggested with several subdivisions. In addition, these theories describe minute details such as which part of a sentence expresses what kind of information and how this information relates one word to the other. Vaiyākaraṇas (grammarians), Naiyāyikas (logicians) and Mīmāṁsakas (exegesists) developed their own theories of verbal cognition. Subbarao (1969) provides detailed diagrammes showing the śābdabodhas of all the three schools providing all the details of the sources of information and the information ﬂow in the process of cognition, according to each of these schools. These theories provide a sound base for sentential analysis.

			The Navya-Naiyāyikas (neo-logicians), further, have developed a technical language for expressing the verbal understanding unambiguously. This language is known as the technical language of Navya-Nyāya. All the schools use this language to express the verbal cognition through this language. For example, the Vaiyākaraṇas’ (grammarians’) śābdabodha of (2) is

			rājakartr̥ka-gokarmaka-viprasampradānaka-dānānukūla-vyāpāraḥ।

			An activity of giving (dāna) whose agent (kartr̥) is a king, whose goal (karman) is a cow and whose recipient (sampradāna) is a brāhmaṇa.

			The exegesists’ (Mīmāṁsakas’) śābdabodha is

			rājakartr̥ka-gokarmaka-viprasampradānaka-dānānukūla-bhāvanā।

			A productive activity (bhāvanā) of giving (dāna) whose agent (kartr̥) is a king, whose goal (karman) is a cow and whose recipient (sampradāna) is a brāhmaṇa.

			There is only a slight difference between a Vaiyākaraṇa’s śābdabodha and that of a Mīmāṁsaka. The Mīmāṁsakas are interested in the speech act and not merely the verbal import. According to them the verbal suffix denotes the bhāvanā which is qualiﬁed by an activity expressed by the verbal root resulting in a productive activity (ārthī-bhāvanā). Thus the verbal suffix is the mukhya-viśeṣya (chief qualificand), whereas according to the Vaiyākaraṇas the verbal root is the mukhya-viśeṣya.

			For a Naiyāyika, the structure of the verbal cognition resulting from this utterance is different. For him, generally, a word in nominative case is the mukhya-viśeṣya. The Naiyāyika’s (logician’s) śābdabodha is

			gokarmaka-viprasampradānaka-dānānukūla-kr̥timān rājā।

			A king who is the agent (kartr̥) of an activity of giving (dāna), whose goal (karman) is a cow and whose recipient (sampradāna) is a brāhmaṇa.

			These theories discuss in detail the sources of information for establishing various relations, justifying such establishments providing supportive theoretical basis and arguments when they differ from other schools. Though these theories differ in the mukhya-viśeṣya and in the minor details such as the source of information in some cases, they unanimously accept major relations used in the Pāṇinian grammar to mark the relations between words. The hair-splitting analysis and due attention paid to the sources of information in a language string made us look at these theories from the computational perspective.

			In the following chapters, we describe the role of the theories of śābdabodha in building a Sanskrit parser. In the next chapter we brieﬂy describe the essential factors that aid the process of śābdabodha, together with the theories of word meaning and sentence meaning in order to understand the process of verbal cognition as described in the Indian tradition. Later we discuss the relevance of these theories from the view of processing the information mechanically. Finally we describe the three different models of Sanskrit parsers based on these theories, each successive model being an improvement over the earlier one.

			

			
				
					1		http://www.perseus.tufts.edu/hopper/about

				

				
					2		http://sanskrit.uohyd.ac.in/scl; http://sanskrit.inria.fr; http://www.sanskritreader.de; http://sanskrit.jnu.ac.in; and http://sanskritlibrary.org	

				

				
					3		http://www.taralabalu.org/panini/

				

				
					4		http://wiki.apertium.org/wiki/Lttoolbox

						*	संहिता एकपदे नित्या नित्या धातु-उपसर्गयोः।

					नित्या समासे वाक्ये तु सा विवक्षाम् अपेक्षते।।

					Sandhi is to be done always i. if the resultant is used as a one word, ii. in between a root and its prefix, and iii. in a compound. In a sentence it is discretionary.

				

				
					5		A sūtra number has three parts: adhyāya (chapter), pāda (a quarter/fourth part) and sūtra (concise formula) number.

				

				
					6		There are two more possibilities, since both have the same gender number and vibhakti, one can be an adjective of the other.

				

				
					7		http://sanskrit.uohyd.ac.in/amarakosha/index.html

				

				
					8		http://www.cfilt.iitb.ac.in/wordnet/webswn/wn.php

				

				
					9		http://www.sanskritlibrary.org/Sanskrit/Vyakarana/Dhatupatha/index2.html

				

				
					10		http://sanskrit.uohyd.ac.in/scl/dhaatupaatha/index.html

				

				
					11		n-grams is a contiguous sequence of n items from a given sequence of text or speech.

				

				
					12		http://kjc-fs-cluster.kjc.uni-heidelberg.de/dcs/index.php

				

				
					13		This tree does not follow any particular theoretical framework.

				

				
					14		Another variant of this compound with ten components is:

					pravara-nr̥pa-mukuṭa-maṇi-marīci-mañjarī-caya-carcita-caraṇa-yugalam.

				

				
					15	 	“T” stands for tatpuruṣa – an endocentric compound, and the numbers 6 and 7 stand for the case. Thus T6 stands for an endocentric genitive compound.	

				

				
					16		Another variant analysis is where mukuṭa and maṇi form one constituent with T6 and then pravara joins them.

				

				
					17		These are not faithful translations but just rough translations of case relations, to indicate the nature of the relation.

				

				
					18		Strictly speaking the relations are between the denotations of nominal stem (prātipadika) and the verbal root (dhātu) which are realized by their suffixes. But for the ease of reading the diagram, we represent these relations between words.

				

				
					19		http://universaldependencies.org/

				

			

		

	
		
			2

			Understanding Texts : Indian Theories

			LANGUAGE is a means of communication. Communication is a two-way process where a speaker expresses his thoughts through a language string and the listener deciphers this language string into the underlying encoded thoughts. These two processes are the processes of generation and analysis. The process of generation, given all the necessary parameters to produce an utterance, is typically deterministic. There are some cases where the language allows alternative expressions leaving the choice open to the speaker.1 Barring such a few cases, once a speaker makes all the choices for various parameters, a generator produces a single linguistic utterance that represents the thoughts of the speaker. Such a linguistic utterance may have ambiguity. One source of ambiguity is the homophonous, homonymous and polysemous words. Another source of ambiguity may be due to mapping of a two-dimensional structure of word relations to a linear structure. Sandhi process is another potential source for introducing ambiguities. When a listener receives a language string, which is a unidimensional representation of the speaker’s thoughts, he has to reconstruct a thought from the linguistic utterance, which may be ambiguous, by relating the words through their meanings together. While doing so, the knowledge of the grammar of a language, the meaning of the words, context, shared knowledge, etc. play a crucial role in understanding/deciphering the message encoded in a linguistic expression. How does one understand a linguistic utterance? The theories of śābdabodha deal with this question.

			The term śābdabodha stands for the cognition (bodha) arriving out of a language string (śabda). A sentence is composed of words and these words have the śakti (potential) to express meaning. Given a sentence, from the word meanings, how does one decide whether the sentence is meaningful or not? If it is meaningful, how does one get the sentence meaning? Where is the information about the relation between the words encoded? And what is the structure of the cognition arising from the words in a sentence? These are the concerns of the theories of śābdabodha.

			In this chapter we present the relevant views on word meaning and sentence meaning from the Indian theories. Only those concepts that are needed in order to understand the following chapters are presented here brieﬂy. Interested readers may refer to Kunjunni Raja (1963) for more elaborate treatment of the subject. First we discuss the views on the meaning of a word. Then we describe the essential factors that are useful in knowing the meaning of a sentence. This is followed by a brief discussion on two dominant views on sentential meaning. Next the structure of the śābdabodha according to different schools is presented. Finally we provide a brief introduction to the procedure a commentator follows in order to explain any text.

			2.1 Word Meaning

			What is the meaning of “meaning”? What are the relations between the thoughts in the mind of a speaker, the referent in the real world and the word itself? These are some of the questions that have been bothering the philosophers in the East as well as in the West. In the West, Ferdinand de Saussure had assumed a direct relationship between the signiﬁcant (word) and the signiﬁé (meaning). There was a major criticism on this position by C.K. Ogden and I.A. Richards and also A.H. Gardiner for the omission of clear reference to the things/referents of the words. Ogden and Richard proposed a triangle showing the relations between a word as a symbol, its referent in the real world and the corresponding mental image or a thought or a reference. According to them a word symbolizes a thought or a reference that refers to the actual referent in the world. Thus for them a word stands for a referent only through a thought.

			All Indian schools of thought assume a direct relationship between the pada (word) and padārtha2 (literally word-meaning). Kunjunni Raja (1963), taking into consideration the Indian theories, argues that it is further necessary to distinguish between a word and its utterance. An utterance is a particular instance or a token of the type that corresponds to the symbolic word. The relation between an utterance, a symbolic word, its mental image/thought and the thing meant or the word in the real world is represented by him as shown in fig. 2.1. In this ﬁgure, a solid line shows a direct relation and a dotted line shows an indirect one.

			
				
					[image:]
				

			

			The direct relation between word and its meaning in Indian thoughts as well as de Saussure’s analysis of the relation between signiﬁcant and signiﬁé correspond to the top side of the square, viz. AB. 4 ABD is the triangle proposed by Ogden–Richards. The vertex C represents the actual sounds of the word uttered. This is the vaikr̥ta-dhvani. This sound, which is attributed with personal variations, when abstracted gives us the prākr̥ta-dhvani, that is devoid of any personal variations. This prākr̥ta-dhvani, represented by the vertex A in the square, still consists of individual sound units, and is not yet cognized as an integral unit. In the next step, the prākr̥ta-dhvani (the whole utterance) is considered to be an integral unit representing an indivisible language-symbol. These three stages are the threefold nature of the revelation of speech, as explained by Bhartr̥hari: paśyantī, madhyamā and vaikharī, corresponding respectively to sphoṭa, prākr̥ta-dhvani and vaikr̥ta-dhvani (Kunjunni Raja 1963).

			A pada, according to a Vaiyākaraṇa, is a sequence of characters that end in either a nominal or a verbal suffix.3 As such each pada consists of at least two parts – a stem and a suffix. For example, gacchati (goes) consists of two parts a root gam (to go) and a verbal suffix ti (third person singular present tense marker). In the case of a primary derivative dhāvantam (running), there are three units, viz. a verbal root dhāv (to run), a kr̥t suffix śatr̥ (present participial marker) followed by a nominal suffix am (an accusative marker). Each of these parts is a meaningful unit – a morpheme. When a Vaiyākaraṇa describes a śābdabodha (verbal cognition), he meticulously describes the connection between meanings of each of these morphemes leading to the sentential meaning. These morphemes are termed pada by a Naiyāyika. According to a Naiyāyika, the essential nature of a pada is its signiﬁcative power or śakti.4 This signiﬁcative power, we saw above, is the relation between a word and its meaning. It is also termed as vr̥tti. Three types of vr̥ttis are discussed in the Indian grammatical tradition. They are abhidhā, lakṣaṇā and vyañjanā. When the relation between word and its meaning is direct, it is called abhidhā. When the relation is indirect, based on the similarity or natural extension of the primary sense, the relation is called lakṣaṇā.5 Vyañjanā is the relation between a word and its meaning other than its literal meaning or any extension thereof.

			2.1.1 ABHIDHĀ (PRIMARY DENOTATION)

			Abhidhā is the primary relation of the word with the sense resulting from the denotative capacity of the word. Based on the nature of these meanings, the primary meaning is further classiﬁed into four subcategories.

			1. Rūḍha (Conventional). A rūḍha meaning is one which is conventional in nature. It is a convention that a word is being used in that sense. For example, ghaṭa to mean “a pot” and paṭa to mean “a cloth”. This comes close to the notion of arbitrariness of a relation between the sound of a word and its meaning in the modern linguistics.

			2. Yaugika (Etymological). All the derived words such as kr̥dantas (verbal nouns), taddhitāntas (secondary derivatives) and samāsas (compounds) where the meaning of a derived word is compositional, fall under this category. Example of a kr̥danta is gāyaka (a singer), of a taddhitānta is manuṣyatā (humanity) and of a samasta-pada is vidyālaya (literally, an abode of knowledge; a school). In the Br̥haddevatā, these are further classiﬁed into dhātujam (derived from a verbal root), dhātuja-jātam (derived from a derivative of a verbal root), samastārthajam (derived from a compound), vākyajam (derived from a sentence as in iti ha āsa = itihāsa), and ﬁnally nirvācyam (a confused derivation as in siṁha (a lion) being derived from hiṁsa (to kill)).

				3.	Yogarūḍha (Etymological but Restricted by Convention). Words whose etymological meaning is restricted by convention fall under this category. For example, the word paṅkaja etymologically refers to anything that is born out of mud.6 But its usage is restricted only to a lotus. As such this meaning is termed as yogarūḍha. Some taddhitānta and samasta-padas would fall under this category.

				4.	Yaugikarūḍha (Both Etymological and Conventional Independently). Words which express etymological as well as conventional meaning independently belong to this category. Udbhid, for example, when taken in an etymological sense means that which breaks or bursts through. And udbhid, conventionally, is the name of a sacriﬁce in Vedic rituals.

			2.1.2 Lakṣaṇā (implication)

			The function of a word, denoting a referent different from its primary one but related to it, is called lakṣaṇā. This implied meaning is further classiﬁed as follows:

				1.	nirūḍha-lakṣaṇā (natural/unintentional implication)

				2.	prayojanavatī-lakṣaṇā (intentional implication)

			a. 	śuddhā (pure)

				i.	ajahad (inclusive)

				ii. 	jahad (exclusive)

				iii.	jahad–ajahad (partially inclusive)

				b.	gauṇī (qualitative implication)

				i.	sāropā (superimposition)

				ii.	sādhyavasānā (intro-susceptive)

				Nirūḍha-lakṣaṇā (Natural Implication)

			If the original, primary or etymological meaning of a word totally disappears and the actual meaning in use is more or less the only meaning it is used for, then such a usage is called nirūḍha-lakṣaṇā. For example, the word kuśala has the etymological meaning kuśān lāti iti (the one who brings the kuśa grass). But this word is being used in the sense of an expert. It was a very skilful job to cut the kuśa grass and bring it. So not everybody could do it. And thus over a period of time the meaning got generalized to “an expert/skilful person”, not necessarily in cutting the kuśa grass but expert in any job. Another such word is dvirepha literally meaning two “r”s. The word bhramara has two “r”s, and hence sometimes it is referred to as dvirepha. Such an extension will make sense only if such usages are in vogue. Otherwise communication will break down. We notice that this class of nirūḍha-lakṣaṇā is very close to the class of yogarūḍha discussed earlier. Kunjunni Raja (1963) points to a ﬁne distinction between yogarūḍha and nirūḍha-lakṣaṇā. According to him the former restricts the meaning while the latter one generalizes it. In the case of paṅkaja the meaning is restricted from “anything that grows in the mud” to the lotus, whereas in the case of kuśala the meaning is generalized from “anybody who is expert in cutting the grass” to “an expert in any activity”.

			The Mīmāṁsakas have a different connotation of nirūḍha-lakṣaṇā. For them this is a technical term used for words which are polysemous with one primary meaning and the other one secondary. For example the verbal suffix tiṅ denotes bhāvanā as the primary meaning and the expressed kāraka such as kartr̥ or karman as the secondary meaning. This secondary meaning is called nirūḍha lakṣya.

			Prayojanavatī-lakṣaṇā (Intentional Implication)

			When a word does not have any connotation for the intended meaning, but the motive of the speaker is to use the word for the intended meaning, such a usage is called prayojanavatī. Of course a speaker cannot use any word to intend anything at his whim. Only under certain conditions can the extended meaning be properly conveyed to the listener. A speaker has some purpose (or intention) in his mind when he uses a word in its extended sense. Hence this type of extension is called prayojanavatī. This extension can be of two types: either through the quality of the referent or through the referent itself. When the extension depends on a quality the referent possesses, the extended meaning is termed as gauṇī, and when it depends on the referent itself, it is termed as śuddhā. The śuddhā and gauṇī are further classiﬁed as below:

				1.	Śuddhā-lakṣaṇā (Pure Implication). Depending on whether the extended meaning includes the primary meaning or not, the extension of meaning further is of three types.

				a.	Ajahad-lakṣaṇā (Inclusive Implication). When the denotative meaning is also included in the extended meaning of a word, it is termed as ajahad-lakṣaṇā (that extended meaning which does not leave the original meaning). For example, in the sentence kākebhyaḥ dadhi rakṣa (protect the curd from the crows), what is intended is to protect the curd not only from crows but also from all the animals and birds that will spoil the curd. Thus here while kāka refers to the extended meaning, it still includes its primary meaning “crow”.

				b.	Jahad-lakṣaṇā (Exclusive Implication). When a word denotes only an extended meaning and the denotative meaning has no role to play in the interpretation, it is a case of jahad-lakṣaṇā (that extended meaning which leaves the original meaning). For example, gaṅgāyām ghoṣaḥ (literally, village on Ganges). Here gaṅgā no more refers to the river, but refers only to its bank.

				c.	Jahad–ajahad-lakṣaṇā (Implication with Partial Inclusion). Sometimes, only a part of the meaning is included with the extended meaning. Such a meaning is termed jahad–ajahad-lakṣaṇā. In example such as paṭo dagdhaḥ (cloth is burnt), paṭa refers to only a part of the cloth and not complete. Another example of this type is tat-tvam-asi (thou art that). Tat refers to the Universal Soul. But when tat is equated with tvam, the equality is with the Universal Soul devoid of all qualiﬁcations such as omnipresence. Thus while tat retains its meaning, part of it is also stripped off. Hence it is an example of implication with partial inclusion.

				2.	Gauṇī-lakṣaṇā (Secondary Implication). Gauṇī-lakṣaṇā is of two types, viz. sāropā and sādhyavasānā. The type of lakṣaṇā, where there is an imposition of some quality of one object on the other, it is called sāropā. For example, mukham candraḥ iva (moon-like face). When the imposition is total, it is called sādhyavasānā. The standard example is ayam candraḥ (this is moon), where ayam points to the face of a beautiful woman.

			The nature of extension is also further studied by the Indians. Depending upon the nature of the extension, various classiﬁcations of lakṣaṇā have been proposed. See Appendix B for details.

			2.1.3 Vyañjanā (suggestion)

			In addition to the primary and extended meanings, rhetoricians and grammarians accept a third category, viz. suggestive meaning or the vyaṅgyārtha. An oft-quoted example is gato ’stam arkaḥ (the sun has set).

			gato ’stam arko bhātindur yānti vāsāya pakṣiṇaḥ ।

			ity evam ādi kim kāvyam vārttām enām pracakṣate ।।

			– Kāvyālaṁkāra II.77

			The sun has set, the moon shines, the birds go home to rest. In such and similar examples, there is no poetry. These are simple cases of vārttā.	– Masson 1979

			While on the face of it, a sentence such as gato ’stam arkaḥ looks like a simple sentence, there is suggestive meaning hidden behind it. In Mammaṭa’s Kāvyaprakāśa we ﬁnd a brilliant explanation of the sentence gato ’stam arkaḥ, explaining how suggestions depend on the listener, the speaker and the context (Masson 1979), as listed below:

				1.	A general would understand that

					The time for destroying the enemy has approached.

				2.	A woman eager to meet her lover might be told by her conﬁdante the time has come to

					Go to meet your lover.

				3.	Friends of a woman ready to meet her lover would mean

					Your lover has almost arrived.

				4.	One worker would say this to another worker in the sense

					Let us stop working now.

				5.	A servant speaking to a brāhmaṇa would mean

					It is time to perform your sandhyā.

				6.	A mother may say this to a child to mean

					Don’t go far.

				7.	A householder, speaking to a cow-herder would mean

					Bring the cows home.

				8.	A friend on a hot day would say this to another friend to mean

					Now it is no longer hot.

				9.	The owner of a shop, saying this to his servant, may mean

					It is now time to put away the goods.

			From these examples we see that the suggestive meaning is different for different speakers, listeners and contexts. These meanings thus have a sociocultural aspect. The suggested meanings depending upon various circumstances are practically endless. And these are over and above the literal and the metaphoric meanings.

			The importance of suggestive meaning for a human being has been noticed since time immemorial. Literal meaning is just a part of the meaning. Many a time in discourse, the suggestive meaning plays an important role, as we saw above. Unless one looks at the suggestive meaning, one may even not understand the signiﬁcance of the speech.

			Naiyāyikas and Mimāṁsakas are more conﬁned to the literal meaning of the text. According to Naiyāyikas, suggestive meaning is arrived at through the process of inference. Discourse analysis through the process of inference can lead to the suggestive meaning. Both Mīmāṁsakas and Naiyāyikas want accuracy and precision in the use of words. They want objectivity in the analysis. Suggestive meanings on the other hand are subjective. They do not have any boundaries and are limited only by the poet’s imagination.

			2.2 Necessary Conditions for Verbal Cognition

			The process of cognition arising from a linguistic utterance is studied in detail by the Indians under the theories of śābdabodha. Kumārila Bhaṭṭa, a Mīmāṁsaka, in his Tantravārttika (Sastri 1903) discusses three factors that explain how various isolated words which comprise a sentence result in the syntactic unity of a sentence giving rise to the sentential meaning.

			ākāṅkṣā sannidhānaṁ ca yogyatā ceti ca trayam।

			sambandhakāraṇatvena kḷptaṁ nānantaraśrutiḥ।।

			– Tantravārttikam, vol. I, p. 455

			Mutual expectancy (ākāṅkṣā), proximity (sannidhi) and congruity (yogyatā) constitute the grounds of relationship; mere immediate sequence is not a ground of relationship.

			– Kunjunni Raja 1963: 156

			Ākāṅkṣā (expectancy), yogyatā (congruity) and sannidhi (proximity) are the three essential factors for śābdabodha. To this, later another factor, viz. tātparya (the intention of the speaker or the purport of the sentence) was added. In what follows, we describe in brief each of these four factors.

			2.2.1 Ākāṅkṣā (expectancy)

			We ﬁrst come across the term ākāṅkṣā in the deﬁnition of a vākya (sentence) in Jaimini’s Mīmāṁsāsūtra 2.1.46:

			arthaikatvāt ekam vākyam sākāṅkṣam cet vibhāge syāt।

			A group of words forms a sentence

				1.	if, when separated, the words have mutual expectancy, and

				2.	if the group of words denote a single meaning/if it serves a single purpose.*

			Thus ākāṅkṣā, expressed through syntax, among words is a necessary condition for a group of words to form a sentence. Literally ākāṅkṣā is the desire on the part of a listener to know (jñātum icchā) the other words in a sentence are needed for complete understanding. Now if ākāṅkṣā is the curiosity (jijñāsā) on the part of a listener then after listening to a verbal form such as ānayati (brings), a listener will have a curiosity to know who brings, what he brings, how he brings and so on. Further if the object of bring is, say, a cow, the listener may have further curiosities such as to ﬁnd out which coloured cow to bring, what is the purpose of bringing her and so on. There is no end to such curiosities. These curiosities are more of a psychological nature than of a syntactic one.

			The Naiyāyikas made a clear distinction between the psychological and the syntactic expectancy. Ākāṅkṣā, according to Naiyāyikas, is the syntactic expectancy a word has in order to correlate with another. For example, in the word dvāram (to the door), the stem dvāra (door) denotes an object in the real world and the am suffix (an accusative marker) marks an expectancy of a verb whose karman (object) can be dvāra. This expectancy which arises from the knowledge of the suffix is a syntactic one, and it allows one to connect the word dvāram with a verb, say, pidhehi (close). This expectancy is not one way, but mutual. It is also not psychological. It is based on the usages of the verbs in a sentence and is thus syntactic in nature. As another illustration, consider two verbs gamḷ (to go) and caraṁ (to wander). Both the verbs gamḷ and caraṁ are used in the sense of motion (gamḷ gatau and caraṁ gatau). However the verb gamḷ is sakarmaka (transitive) while caraṁ is akarmaka (intransitive). This requirement of a karman (object) for gamḷ is not psychological, but is based on the usage of the verb.

			The expectancies which are mutual, direct and natural are termed niyata or utthita-ākāṅkṣā (restricted or risen expectancy) (Kunjunni Raja 1963). The expectancy between a verb and the words denoting kārakas or between relational words falls under this category.7 In contrast to mutual expectancy, the expectancy that is unilateral is called aniyata or utthāpya-ākāṅkṣā (unrestricted or to be raised). This is aroused only if necessary. So it is potential. For example, in a phrase such as white cow, the ākāṅkṣā of white for a substantive is natural, but the ākāṅkṣā of cow to have an adjective is potential. It gets aroused only in the presence of an adjective such as white. Even a noun in apposition may arouse an expectancy. The example discussed in the Rāmarudrī commentary on the Dinakarī commentary on the Nyāyasiddhāntamuktāvalī is udayati candraḥ kumudabāndhavaḥ (Jere 2002) (rises the moon, the friend of a lotus that opens its petals during night and closes them in the morning). After hearing udayati candraḥ (the moon rises) all the expectancies are fulﬁlled. And thus understanding is complete. Now when one hears kumudabāndhavaḥ (friend of a lotus) then this word needs to be related to one of the words uttered earlier because there cannot be freely hanging words in a meaningful sentence. This word has an expectancy of a substantive and thus it gets related to candraḥ. Both these cases are examples of unilateral expectancy.

			2.2.2 Sannidhi (proximity)

			Sannidhi is deﬁned in the Tarkasaṁgraha as an utterance of words without any gap (padānām avilambena uccāraṇam) (Tarkasaṁgraha 47), or as the presentation of word meanings without any intervention (a-vyavadhānena pada-janya padārtha-upasthitiḥ). From the text processing point of view, the latter deﬁnition is important. If some unrelated words intervene between related words, then such an utterance does not produce any verbal cognition. To make the point clear, Viśvanātha Pañcānana, in his Nyāyasiddhāntamuktāvalī (Joshi 1985), gives the following example:

			Skt: giriḥ bhuktam agnimān devadattena।

			Gloss: Hill {m, sg, nom.} is_eaten ﬁery {m, sg, nom.} Devadatta {ins.}.

			Eng: Hill is fiery. (It) is eaten by Devadatta.

			The words giriḥ (hill) and agnimān (ﬁery) have mutual expectancy so do bhuktam (eaten) and devadattena (by Devadatta). Bhuktam, being a past participle in the neuter, expects a kartr̥ in the instrumental case and a karman in the neuter nominative. But this group of four words does not have a neuter nominative. So we interpret either the verb bhuj (to eat) in this context to be an intransitive or consider the example to be a case of the ellipsis of the karman kāraka. In either case this group of four words corresponds to two independent sentences whose arguments are intertwined. Bhuktam intervenes between the words giriḥ and agnimān which have mutual expectancy. Similarly agnimān intervenes between the related words bhuktam and devadattena. This intervention forms an obstacle to verbal cognition.

			The condition of not having intervention is only a necessary condition in the process of śābdabodha. For, even non-intervention may give rise to more than one śābdabodhas: one of them as a true cognition (pramātmaka-jñāna) and the other one as a false cognition (bhramātmaka-jñāna) as explained by Viśvanātha Pañcānana in the Nyāyasiddhāntamuktāvalī (Joshi 1985) with the following example:

			Skt: nīlaḥ ghaṭaḥ dravyam paṭaḥ।

			Gloss: Blue {nom.} pot {nom.} thing {nom.} cloth {nom.}.

			This may lead to two cognitions, as described below:

			1.	The pot is blue, and the cloth is a thing.

			2.	The cloth is blue, and the pot is a thing.

			There are three situations possible: The ﬁrst one in which only the pot is blue, the other one only the cloth is blue and the third one in which both the pot and the cloth are blue. In the ﬁrst two situations then, only one among these cognitions would lead to a true cognition and the other one to a false cognition, while in the third situation, both the cognitions would be true. The notion of true cognition and false cognition is thus context dependent. The notion of sannidhi on the other hand depends only on the expectancies and the compatibility of the meanings of the words involved.

			2.2.3 Yogyatā (congruity)

			Yogyatā is suitability or compatibility. Here the term is being used in the sense of mutual compatibility or ﬁtness of meanings of related words in a linguistic utterance. Yogyatā is deﬁned in the Tarkasaṁgraha as the artha-abādhaḥ8 (absence of obstruction in meaning). In the Paramalaghumañjūṣā it is deﬁned as paraspara-anvaya-prayojaka-dharmavattvam (a property of promoting mutual relationship), in the Śabda section of the Tattvacintāmaṇi it is deﬁned as bādhaka-pramā-virahaḥ (lack of hindrance of valid cognition) and the Vākyārthamātr̥kāvr̥tti deﬁnes it as sambandha-arhatvam (ability to establish a relation). Thus we see that while some have deﬁned it as a positive property, others have deﬁned it in terms of absence. Each of these deﬁnitions, therefore, will have different implications in its usage. We will look at some aspects of these implications from the computational point of view in Chap. 3.

			The pair of examples discussed in the literature for explaining the concept of yogyatā is payasā siñcati “(He) sprinkles with water” vs vahninā siñcati “(He) sprinkles with ﬁre”. The previous one satisﬁes yogyatā while the latter one lacks it. There are different opinions with respect to the verbal cognition in the absence of yogyatā. Naiyāyikas insist on yogyatā as one of the essential factors in the process of verbal cognition, since for them śabda is a means of valid cognition. Vaiyākaraṇas, on the other hand, admit that even in the absence of yogyatā, verbal cognition does take place. The basic difference between the two opposite opinions is due to the differences in their basic axioms. For a Naiyāyika, linguistic expressions are the representations of reality whereas for a Vaiyākaraṇa it is the representation of a mental creation. The position of Mīmāṁsakas is not different from that of the Vaiyākaraṇas. In the Ślokavārttika 1.1.2.6, Kumārila Bhaṭṭa clearly states:

			atyantāsaty api hy arthe jñānam śabdaḥ karoti hi ।

			abādhāt tu pramām atra svataḥ prāmāṇyaniścalām ।।

			When the meanings are inconsistent, that is, there is lack of yogyatā among the meanings, the overall meaning will still be conceivable. When the meanings are consistent, that is, when there is congruity among the meanings of various words in a sentence, the sentence produces not only a verbal cognition but also a valid cognition.

			– Kunjunni Raja, Indian Theories of Meaning, p. 165, n 2

			Thus we see that a distinction is made between a verbal cognition and a valid cognition. The verbal cognition needs to be valid for the śabda to be a means of valid cognition (pramāṇa). The sentence vahninā siñcati though cannot produce a valid cognition, one may still imagine another possible world where ﬁre is in liquid form. Alternately, if the incongruity may be explained by resorting to a secondary meaning, vahninā siñcati would lead to a valid cognition. There is yet another class of incongruity as in the case of square circle or vandhyā-suta (son of a barren woman) where the meanings are logically inconsistent and in no way one can assign metaphorical interpretation to them leaving them inconceivable.

			Thus there are three different situations:

				1.	The word meanings are mutually congruous (payasā siñcati).

				2.	The word meanings are not mutually congruous, but the meanings are conceivable (vahninā siñcati)

				a.	either through the metaphoric meaning,

				b.	or in a possible world.

				3.	The word meanings are logically inconsistent/contradictory (square circle).

			2.2.4 Tātparya (purport)

			According to Gaṅgeśopādhyāya and Viśvanātha, tātparya is the fourth factor essential for verbal cognition.9 It is the meaning of a sentence what a speaker intends it to mean (and not what a speaker has in his mind). A speaker may intend a listener to understand the same text differently in different contexts. While the context helps a listener in deciding the intended sense, sometimes the speaker may use intonation to communicate the intended meaning. Tātparya is also used to explain the meaning of a sentence that is over and above the sum total of the meaning of its constituent words. Vedāntins and Mīmāṁsakas, being engaged in the interpretation of the Vedic texts which they consider to be authorless (apauruṣeya), formulate their theory of verbal cognition without any reference to the speaker. According to them, it is the meaning conveyed by the capacity of words themselves that helps in determining the intended meaning of the passage.

			Naiyāyikas discuss various cases of tātparya and the sources that help in deciding the tātparya in each case:

				1.	The ﬁrst case is the one where a homonymous word is used leading to ambiguity. The example is

			Skt: saindhavam ānaya।

			Gloss: Salt/Horse {acc.} bring.

					Here the context determines the speakers’ intended meaning. If you are having lunch, it means salt, and in the context of a war, it refers to a horse. Of course, in the context of a dinner in the battleﬁeld, it may mean either!

				2.	The second case is where the sentence is ambiguous syntactically. The example discussed in the literature is

			Skt: ayam eti putraḥ rājñaḥ puruṣaḥ apasāryatām।

			Gloss: Here comes a_son of_a_king man should_be_removed

					which is ambiguous between “Here comes the son of a king, the man should be removed” and “Here comes the son, the king’s man should be removed”, depending on whether the word rājñaḥ is connected with putraḥ or with puruṣaḥ. Again it is the context in which this sentence is uttered that removes the ambiguity.

				3.	The third case arises when a speaker intends the secondary meaning, while the primary meaning makes full sense, as in the case of kākebhyaḥ dadhi rakṣatām (protect the curd from the crow). Here the meaning of kāka as a crow makes perfect sense. But what is intended is not only the protection of the curd from a crow, but from all those animals and birds who would spoil the curd. Thus, this is a case where the speaker’s intention plays a more prominent role than the context.

			Nāgeśa, a Vaiyākaraṇa, in his Laghumañjūṣā has accepted tātparya as one of the factors in the process of verbal cognition and, according to him, the clues for deciding the intended meaning are provided by the context.

			Mīmāṁsakas refer to six liṅgas (indicators) for deciding the intended meaning. They are:

			1.	upakrama–upasaṁhāra (consistency in the meaning from the beginning to the end),

				2.	abhyāsa (repetition of the main topic),

				3.	apūrvatā (novelty in the subject matter),

				4.	phala (result intended),

				5.	arthavāda (corroborative/eulogistic remarks), and

				6.	upapatti (arguments in favour of the main topic).

			Use of these indicators ensures that the intended meaning can be objectively inferred using the context.

			Some Ālaṁkārikas (rhetoricians) include tātparya in suggestive meaning.10 Thus, a sentence gato ’stam arkaḥ (the sun has set) may mean different things to listeners in different contexts, as seen earlier. For a child playing in a playground, it may mean “now it is getting dark, and it is time to stop playing and go home”, for a brāhmaṇa, it may mean “it is time to do the sandhyā-vandana (a ritual at dusk)”, and for a young person it may mean “it is time to meet his/her lover”.

			Here we note that, while Naiyāyikas, Vaiyākaraṇas and Mīmāṁsakas rely on the literal meaning, the Ālaṁkārikas use the word tātparya to refer to the suggestive meaning.

			2.3 Vākyārtha (Sentential Meaning)

			When we hear a sentence, we get a unitary meaning from it. There are two different approaches to the study of sentential meaning in Indian tradition. They are khaṇḍa-pakṣa (analytic approach) and akhaṇḍa-pakṣa (gestalt view). According to the khaṇḍa-pakṣa, the words in a sentence have autonomous status and the word meanings contribute towards the sentential meaning. In the akhaṇḍa-pakṣa view, the words in a sentence do not have any relevance. The sentence is an indivisible and integral linguistic unit. One gets the meaning of a sentence by vākya-sphoṭa. This is like a gestalt effect. The words in a sentence are just pointers to arrive at the correct meaning. From the computational perspective, the khaṇḍa-pakṣa provides us a better and economic model, since we can compose the meaning of a sentence from those of its constituting units.

			Under this approach of khaṇḍa-pakṣa and from the point of view of understanding, information needed for deciphering any sentence falls under three categories:

				1.	a relation between a word and its meaning,

				2.	relations between the words in a sentence, and

				3.	generating the overall meaning of a sentence using the above information.

			Earlier we have seen three types of relations between a word and its meaning. In the next chapter we will see how to connect the words in a sentence. Now we look at what Indian grammatical theories of meaning have to say about the third factor. The third factor deals with an important aspect of the theory of verbal comprehension and the major debate on whether the sentence meaning is the collection of the word meanings that comprise it or it is the sense we get from the collection of related words. The former theory is known as Abhihitānvayavāda and the latter is known as Anvitābhidhānavāda. The Mīmāṁsā system is known for the science of sentence interpretation (Vākyaśāstra). Whether the sentential meaning arises from the words constituting it or from the meanings of the words in a sentence is debated by the Mīmāṁsakas. This debate resulted in two prominent schools – Prābhākara and Bhāṭṭa – led by Prabhākara Mīmāṁsaka and Kumārila Bhaṭṭa, respectively.

			The Prābhākara school argues that the words convey their individual meaning as a connected entity in syntactic relation to other words in a sentence. Thus the sentence meaning is the sum total of the meanings of such connected words. Or in other words, a word in a sentence does not convey its own meaning in isolation, but it conveys the meaning only in the context, as related to other word(s) in the sentence. This theory cites an example of a child learning a language through observation and the process of inclusion and exclusion (āvāpa-udvāpa or anvaya-vyatireka). They believe that every word expresses its meaning only as related to the other words in a sentence. One cannot comprehend a word in isolation. What a word conveys is its meaning in relation to the other words. Thus for example, in the sentence gām ānaya (bring a cow), the meaning of the verb bring is in relation to the object of bringing, viz. a cow. If the object of bringing changes, the meaning of the verb bring also changes accordingly, since bringing a cow will be different from, say, bringing salt, as far as the action is concerned. In bringing a cow, you may tie a rope to the cow and pull her, but you will bring salt in a box. Thus the meaning conveyed by the words is that of the whole sentence, each word contributing its meaning in syntactic connection with the other. For establishing the syntactic connection and deciding the compatibility of the meanings, they do use the conditions of ākāṅkṣā, yogyatā and sannidhi. This school of thought explaining the sentence meaning is known as Anvitābhidhānavāda, since the connected words (anvita) convey the meaning expressed by such a connection (abhidhāna).

			The Bhāṭṭa school claims that the words in a sentence express their individual meanings and then the three factors, viz. ākāṅkṣā, yogyatā and sannidhi, condition them further to generate the sentential meaning. Thus according to this theory, when a sentence is heard, the listener isolates the words from one another and gets the meaning of each word. Then the expectancy (ākāṅkṣā) connects the words, provided the meanings are mutually congruous (yogya) and further the constraint of proximity (sannidhi) checks that there is no violation of the principle of proximity in the association of words. This school of thought discussing the sentence meaning is known as Abhihitānvayavāda.

			We notice that the process of arriving at the sentential meaning following the Mīmāṁsā schools is a bottom-up process, since they are Khaṇḍapakṣavādins (believers in the analytical method). Both of these schools accept the three conditions for arriving at the sentential meaning mentioned above. We have followed this bottom-up process for building an automatic sentential parser. Since we are aiming at developing a parser that shows the relations between the words in a sentence, and not at making the computer understand a sentence, we use the word meanings only when required and as much required. We start with the meaningful units in a sentence. Some of these meaningful units termed function words (vibhaktis) establish the relations between the content words (prātipadika/dhātu). Such a relation results in the composite meaning of the related words together. This process of relating words to each other in composite units is continued until all the words in a sentence are related in a single composite unit.

			The compositionality of word meanings is discussed by Patañjali in the Samarthāhnika of the Mahābhāṣya. Though he is discussing the meaning of compound words, many of the issues are the same for inﬂected words in a sentence. Patañjali discusses four different types of sāmarthya,11 viz. saṅgatārtha (united meaning), saṁsr̥ṣṭārtha (collective meaning), samprekṣitārtha (considered meaning) and sambaddhārtha (related meaning). The analogies he gives for these four meanings are: oil with ghee (which are impossible to separate from each other, once mixed), wood ﬁre (where we can separate one log of wood from the other), a cow tied to a nail with a rope (the two things the cow and the nail are easily separable) and a relation of a father with his son (where we see two distinct entities, with an invisible bond between them). We see a difference in the separability of the items involved in these four cases. Similarly, Patañjali says, in the case of compounds also, we see a spectrum in the compositionality of the meaning of a compound and that of its components. At one extreme, we have compound words whose meaning is completely new, where it is hard to ﬁnd the traces of the meaning of individual components, and at the other end we have compounds whose meaning is totally composed of the meanings of its parts. The situation with the sentence is similar. There are cases where the sentential meaning is completely compositional and cases where it is totally non-compositional.

			2.4 Structure of Verbal Cognition

			Śābdabodha is the cognition arising from the meaning of a sentence. In the Nyāyasiddhāntamuktāvalī it is deﬁned as the result12 of an activity of remembrance of the meaning of words where the cognition of words act as an instrument. In the process of śābdabodha, ﬁrst of all, a word is cognized. This cognition of a word acts as an instrument for the activity of remembrance of its meaning. The knowledge of the relation between a word and its meaning assists in this activity. This activity produces the verbal cognition. We have seen above various factors involved in the production of the verbal import of a sentence. Now we will see the structure of the verbal import. The verbal import in all the three schools, viz. Vyākaraṇa, Nyāya and Mīmāṁsā, is represented as a modiﬁer–modiﬁed relation. All the three schools differ in some minor details regarding the chief qualiﬁcand and also the nature of information coded in various morphemes. We describe here the Vaiyākaraṇas’ (grammarians’) and Naiyāyikas’ (logicians’) śābdabodha with an example.13

			Consider a sentence

			Skt: rāmaḥ vanam gacchati।

			Gloss: Rāma {nom.} forest {acc.} goes.

			Eng: Rāma goes to the forest.

			In the verbal cognition, ﬁrst, every word is cognized as made up of two morphemes: a prakr̥ti (stem/root) and a pratyaya (suffix). Thus the above sentence is composed of six morphemes, viz. rāma, su, vana, am, gam and ti. Then through the denotative capacities of these morphemes, one gets the meaning of each part. Each nominal stem (prātipadika) denotes three aspects,14 viz. jāti (genus), vyakti (an individual) and liṅga (gender). Thus rāma denotes a person by name Rāma with masculine gender. Vana denotes a “forest” with neuter gender. A verbal root denotes an activity favourable to the result (phala-anukūla-vyāpāra). Thus gam denotes an activity favourable to the contact with the desired region (uttaradeśa-saṁyoga-anukūla-vyāpāra), in this case a forest. The verbal suffix ti denotes the doer of the activity (kartr̥) in addition to the number (saṅkhyā), person (puruṣa) and tense (kāla).

			The suffix am denotes the locus of the result of the activity (phalāśraya), viz. the forest. And the suffix su has the same denotation as that of rāma. Now mutual expectancy, meaning congruity and proximity come into play. The expectancy of the verb gam to have distinct loci for the result of the action and the activity of the action, i.e. for phala and vyāpāra, respectively, demands two distinct nouns satisfying this expectancy. The nominal suffix am represents the accusative case and thus denotes the karman (phalāśraya), and the verbal suffix ti marks the locus of the doer of the action. Su has the same denotation as that of rāma, which agrees in number and person with the denotation of ti, thus establishing a relation of non-difference (abheda) between the locus of the doer of the activity and rāma. For each such connection it is ensured that the connected meaning is congruous and there is no violation of proximity. The collection of all these meanings results in the following śābdabodha.

			eka-vana-abhinna-āśrayaka-uttara-deśa-saṁyoga-anukūlaḥ।

			eka-rāma-abhinna-āśraya-nirūpakaḥ vartamāna-kālikaḥ vyāpāraḥ।।

			An activity qualiﬁed by present tense, which takes place in Rāma, and the result of which is the contact with a forest.

			Figure 2.215 shows the dynamics of information ﬂow giving rise to the verbal import described above. The morphemes are shown in ovals and their denotations are shown in squares connected by dotted lines. The solid lines joining the meanings of various morphemes produce the verbal import.

			The Naiyāyikas’ śābdabodha for the same sentence is

			eka-vana-karmaka-uttara-deśa-saṁyoga-anukūla-vyāpāra-janaka-vartamāna-kālika-kr̥timān rāmaḥ

			Rāma is the locus of the present activity whose result is the contact with a forest.

			The information ﬂow is shown in fig. 2.3. The six morphemes in this śābdabodha are the same as those of Vaiyākaraṇas’ śābdabodha. However, the modiﬁer–modiﬁed relations are different. The major difference between the two śābdabodhas is the mukhya-viśeṣya (chief qualiﬁcand). For the grammarians, the chief-qualiﬁcand is the activity denoted by the verb, while for the logicians, the chief qualiﬁcand is the substantive in nominative case.

			
				
					[image:]
				

			

			2.5 Understanding Texts: Commentary Tradition

			Free word order in Sanskrit had a key role in the emergence of the poetic style, rather than prose, as a natural style for Sanskrit compositions. Authors who have written Sanskrit prose also have taken advantage of the free word order to present texts that are consistent with the intended metre or are interesting from the aesthetics point of view. But it is also true that it is difficult to understand poetry compared to prose. This is evident from the fact that we notice the commentators, especially commenting on the kāvya (poetic) literature, ﬁrst rewrite the verse in prose in some default word order and then comment on it. The issue of word order is not only restricted to the verse style, but even in prose we ﬁnd a lot of stylistic variation in the word order. For example, in order to bring certain point to focus, the author may bring it to the front thereby changing the default word order. This deviation from the normal word order adds an extra load on the part of the readers in understanding the poetry. In order to understand such texts, one needs special training for interpreting these texts. We come across commentaries on several of such Sanskrit poetic texts, which make their understanding easier. These commentaries follow a certain well-deﬁned structure while explaining any śloka. According to the Parāśara Purāṇa16 a commentary has the following ﬁve components:

			
				
					[image:]
				

			

				1.	Segmentation (padaccheda),

				2.	word analysis and its meaning (pada-paricaya and padārtha-ukti),

				3.	compound word analysis (vigraha),

				4.	sentential analysis (vākya-yojanā), and

				5.	answers to objections (ākṣepeṣu samādhāna).

			In the Indian tradition, we see two methods followed by commentators while dealing with sentence-level analysis of ślokas (Tubb and Boose 2007). The ﬁrst one is the daṇḍānvaya (also known as anvayamukhī). In this method, ﬁrst the commentator arranges the words in the śloka in a prose form, following a default word order typically encountered in prose, described by the following verses:

			ādau kartr̥padam vācyam dvitīyādipadam tataḥ ।

			ktvātumunlyap ca madhye tu kuryād ante kriyāpadam ।।

			– Samāsacakra, Kārikā 4; Bhagirath 1901: 12

			Starting with kartr̥, followed by other words, placing the non-ﬁnite verbal forms such as ktvā, tumun, lyap in between, place the main verb at the end.

			viśeṣaṇam puraskr̥tya viśeṣyam tadanantaram।

			kartr̥-karma-kriyā-yuktam etad anvaya-lakṣaṇam।।

			– Samāsacakra, kārikā 10; ibid.: 13

			Starting with adjectives, targeting the headword, in the order of kartr̥–karma–kriyā (subject–object–verb) gives an anvaya (the natural order of words in a sentence).

			And then the commentator further explains this anvaya, providing the morphological analysis of difficult words, explaining the compounds, providing grammatical details wherever necessary, supplying ellipsed words, explaining the meanings of some rare usages and ﬁnally paraphrasing the complete śloka in his own words, sometimes even providing the śābdabodha, following the theories described above.

			The second method is known as khaṇḍa-anvaya (also known as katham-bhūtinī), where the commentator starts with the verb and the expectancies associated with the verb, and goes on ﬁlling these slots with the nominal forms in the śloka. Once the basic skeleton with all the expectancies is ready, then the commentator connects the viśeṣaṇas (adjectives) to their viśeṣyas (headwords), providing ﬂesh to the skeleton.

			In both these approaches, the aim of the commentator is to unfold the encoded meaning. While doing so, the commentator takes clues from the theories of śābdabodha.

			2.5.1 Canonical word order

			A commentator paraphrases the prose or poetry being commented upon in some default word order, called the daṇḍānvaya, or simply an anvaya, as described above.

			Aralikatti (1991) has shown that the unmarked word order in Sanskrit is SOV. That is, all the arguments of a verb are placed to the left of the verb starting with the kartr̥, then karman followed by other arguments, the attributive adjectives are placed to the left of the noun they qualify and the predicate is at the end of the sentence. The subordinate clauses, if any, are before the predicate.

			Taking clue from the verses described above describing the default prose word order and also learning from Aralikatti (1991), we deﬁne a sentence to be in “canonical word order” if it satisﬁes the following criterion:

			All the modiﬁers are placed to the left of the word they modify.

			This is equivalent to the following:

				1.	The adjectives are to the left of the substantives they qualify.

				2.	All the arguments of a verb (either in ﬁnite form or in non-ﬁnite form) are to its left.

				3.	All the non-ﬁnite forms that modify the ﬁnite verb form are to its left.

			This implies that the main verb17 is always the last word of a sentence.

			2.6 Conclusion

			In this chapter we looked at three levels of meaning, viz. abhidhā, lakṣaṇā and vyañjanā, a word expresses. Then we saw the role of various factors such as ākāṅkṣā, yogyatā, sannidhi and tātparya that helps one to connect the words in a sentence through their meanings. This results into the śābdabodha. Two prevalent theories of sentential meanings were discussed and ﬁnally we also looked at the commentary tradition. We notice that these theories provide precise sources for each and every piece of information coded in a language string and describe the ﬂow of information. In the next chapter, we shall discuss the importance of these concepts from mechanical processing point of view.

			

			
				
					1		For example, in the Aṣṭādhyāyī, the mahāvibhāṣā (a general alternative) corresponding to the samāsa (compounds) provides a choice to the speaker for use of a compounded form or its paraphrase.

				

				
					2		padasya arthaḥ = pada-arthaḥ = padārthaḥ

				

				
					3		suptiṅantam padam – A 1.4.14

				

				
					4	 	śaktam padam – Tarkasaṁgraha, 48	

				

				
					5		There is a school which distinguishes between the similarity and the extension through some relation. The former is called gauṇī and the latter lakṣaṇā.

				

				
					6		paṅkāt jāyate iti।

				

				
					7		Niyatākāṅkṣā: yathā kriyākārakapadānām parasparākāṅkṣā (Jere 2002).

				

				
					8		All these deﬁnitions are listed in Jhalkikar’s Nyāyakośa, p. 675.

				

				
					9		vaktur icchā tu tātparyam – (Śabdakhaṇḍa, Bhāṣāpariccheda 84) Joshi 1985: 198.

				

				
					10		tātparyārthaḥ ca vyaṅgyārtha eva – Pratāparudrīya II under v 5 (Kumārasvāmin 1909)

				

				
					11		saṁgatārtham samartham saṁsr̥ṣṭārtham samartham samprekṣitārtham samartham sambaddhārtham samartham iti 		– under A 2.1.1 in MBh

				

				
					12		padajñānam tu karaṇam dvāram tatra padārthadhīḥ ।

					śābdabodhaḥ phalam tatra śaktidhīḥ sahakāriṇī ।। (Śabdakhaṇḍa, Bhāṣāpariccheda 81) (Joshi 1985: p. 171)

				

				
					13		For more details about the differences among various schools, and also for more varied examples, please refer to Subbarao (1969), Deshpande (2007) and Scharf (1990).

				

				
					14		There are differences of opinion among different schools regarding what information each nominal stem codes. We do not go here into the details, since it is outside the scope of this book. Interested readers may refer to Subbarao (1969) for more details.

				

				
					15		This and the following ﬁgure are adapted from the diagrammatic representations of śābdabodha in the Appendix of Subbarao (1969).

				

				
					16		padacchedaḥ padārthoktir vigraho vākyayojanā ।।

					ākṣepeṣu samādhānam vyākhyānam pañcalakṣaṇam । – Parāśara Purāṇa 18.17-18

				

				
					17		The main verb can be either in ﬁnite form, or in a participial form with either of the suffixes: kta, ktavatu (Speijer 1886, reprint 2009), or any of the kr̥tya suffixes, viz. anīyar, tavyat, tavya, yat, kyap, ṅyat or kelimer.

				

			

		

	
		
			3

			Śābdabodha Theories and Sanskrit Parsing

			In this chapter we will see how the concepts of ākāṅkṣā, yogyatā, and sannidhi are useful in building a sentential parser for Sanskrit.

			3.1 Ākāṅkṣā: Establishing Relations

			Ākāṅkṣā1 (desire), as we saw earlier, is the expectancy a word has for another word. This expectancy establishes a relation between two words. In order to connect a word with another, we should know where exactly is this information of expectancy coded? What is the semantics associated with such a relation? Is this information coded explicitly or is it implicit? If it is implicit, how do we ﬁgure it out? How do we name such a relation? Is there any repository of relation names? We try to provide answers to these questions below.

			3.1.1 Where is the information?

			The expectancy of a verb is encoded in its usage. Various kārakas a verb expects are expressed by means of different case suffixes. The case suffixes of nouns express the role the noun has with respect to an activity expressed by a verb. Thus the case suffixes have an expectancy for a verb. These two together establish a relation between a noun and a verb corresponding to the various kāraka requirements of the verb. Sometimes the agreement features between a noun and a verbal form, or between two nouns mark a relation. Similarly certain indeclinables have an expectancy to relate to other words. The position of certain words in a sentence also provides us clues regarding the relations between the words in the sentence. We illustrate below these clues with examples:

				1.	Usage. The expectancy of a verb for nouns, satisfying the kāraka requirement, is encoded in its signiﬁcation (śakti). Indian theories discuss eight different means of learning the usage of words:2 vyākaraṇa (grammar), upamāna (analogy), kośa (dictionary), āptavākya (usage by a trustworthy person), loka-vyavahāra (popular usage), vākyaśeṣa (rest of the sentence or even an ellipsis), vivr̥ti (explanation) and siddhapada-sannidhi (known words in the proximity). Among these, analogy, known words in the proximity, rest of the sentence or even explanation can help in understanding the meaning of a verb. But none of these provides any clue for the expectancy of a verb. The four factors that are useful for knowing the expectancies of a verb are vyākaraṇa, kośa, āptavākya and vyavahāra. Grammar is associated with auxiliary databases such as a dhātupāṭha (list of verbal roots classiﬁed into classes). Dhātuvr̥ttis (commentaries on the dhātupāṭha) sometimes provide information about the transitivity (roughly the property of being sakarmaka/akarmaka) of a verb. Similarly, the kośas typically provide the information of transitivity of verbs. But the expectancy of other kārakas is not available through kośas or grammar, barring some exceptional cases. For example, we know that certain verbs with lyuṭ (gerund) suffix denote a karaṇa-kāraka (an instrument) associated with that verb, as in lekhanī (a writing instrument such as a pen/a pencil). From this, one can infer that the verb likh (to write) has an expectancy of a karaṇa-kāraka. It is the usage either through vyavahāra or āptavākya that really helps in deciding the expectancies of a verb. Sanka (2015) has collected such a list of expectancies of verbs from the corpus. She provides a list of frequently used verbs with their expectancies and also expectancies for verbs with preﬁxes, along with examples from the corpus.

				2.	Suffixes. These fall under two types: inﬂectional (tiṅ, sup) and derivational (taddhita, kr̥t and sanādi). The former are either nominal or verbal. These suffixes provide us clues for establishing relations between words.

				(a)	Verbal Suffixes. The verbal suffixes, both the inﬂectional and the derivational, themselves may express some kārakas (either kartr̥ or karman). For example, the verbal suffix ti in the ﬁnite verb form in the active voice as in gacchati (goes) expresses a kartr̥-kāraka, while the verbal suffix te in the ﬁnite verb form in the passive voice as in gamyate (has gone), expresses a karma-kāraka. The śatr̥ (present participle) suffix in the primary derivative such as gacchan expresses a kartr̥ and so on. The kāraka expressed through such suffixes is called abhihita (expressed). These verb forms, however, do not convey the complete information about the kāraka such as who the referent is. A substantive which is in agreement (agreeing in number and person) with the verb provides the referent. A vārttika3 on the Pāṇinian sūtra anabhihite (2.3.1) (if not already expressed) explains abhihita as the one which is expressed either by tiṅ (a ﬁnite verbal suffix), kr̥t (a non-ﬁnite verbal suffix), taddhita (derivational nominal suffix) or samāsa (compound). For example, in the sentence

			Skt: rāmaḥ vanam gacchati।

			Gloss: Rāma {nom.} forest {acc.} goes.

			Eng: Rāma goes to the forest.

					The verb being in the active voice (kartari prayogaḥ), the verbal suffix ti expresses the kartr̥. In the following sentence in the passive voice (karmaṇi prayogaḥ)

			Skt: rāmeṇa vanam gamyate।

				Gloss: Rāma {instr.} forest {nom.} is_gone.

					the karman is expressed by the verbal suffix. As such, in both cases, the kāraka which is expressed (kartr̥ and karman, respectively) by the verb form gets a nominative case suffix and shows number and person agreement with the verb form.

					Similarly, the derivational suffixes also express kartr̥ and karman-kāraka. For example, in

			Skt: dhāvan aśvaḥ।

				Gloss: Running horse.

					The kr̥t suffix śatr̥ in dhāvan expresses the relation of kartr̥4 and indicates the one which performs the action of dhāv (run).

				(b)	Nominal suffixes. They fall under three categories:

				i. 	A case marker (vibhakti) indicating a kāraka relation. This marks a relation between a noun and a verb known as a kāraka relation. Sanskrit uses seven case suffixes to mark six kāraka relations, viz. kartr̥, karman, karaṇa, sampradāna, apādāna and adhikaraṇa. The genitive suffix, in addition to marking a kāraka relation,5 is predominantly used to mark a noun–noun relation.

				ii.	Upapada vibhakti. In addition to the noun–noun relations expressed by the sixth case, there are certain words that mark a special kind of noun–noun relation. These words mark a relation of a noun with another noun, and in turn demand a special case suffix for the preceding noun. For example, the upapada saha demands a third case suffix for the preceding noun as in

			Skt: rāmeṇa saha sītā vanam gacchati।

			Gloss: Rāma {instr.} with Sītā forest {acc.} goes.

			Eng: Sītā goes to the forest with Rāma.

				iii.	Vibhaktis indicating various other relations such as the following.

				A.	Atyantasaṁyoga (intimate and total contact) as in māsam adhītaḥ (he studied for a month without any break), where the accusative case in māsa indicates the intimate and total contact.

				B.	Kriyā-viśeṣaṇa (adverbial usage) as in vegena dhāvati (he runs fast), where the third case in vega indicates the adverbial usage.

				C.	Aṅgavikāra (defect in a body-organ) as in akṣṇā kāṇaḥ (blind with an eye), where the third case in akṣṇā indicates the defect in a body organ.

				D.	Nirdhāraṇa (specifying one out of many) as in nareṣu śreṣṭhaḥ (best among the men). The sixth or seventh case marker is used to single out one out of many.

				E.	Vibhakta (distinct/different) as in gopālāt śyāmaḥ avaraḥ (Śyāma is inferior to Gopāla). Here the ablative case marker is used for differentiation.

				F.	Karmapravacanīya as in vr̥kṣam anu vidyotate vidyut (there is lightening towards a tree), the word anu governs the vibhakti of the preceding noun vr̥kṣa and thus indirectly marks the relation between the noun it governs and the verb.

				3.	Agreement. In Sanskrit we ﬁnd two cases of agreement, viz. between two nominals, and between a noun and a verbal suffix. The ﬁrst one is the case of adjectives, while the second one indicates the kāraka relation expressed through a verb, which we have already discussed. This agreement denotes the coreference and is termed samānādhikaraṇa relation. Agreement in gender, number and case suffix marks sāmānādhikaraṇya or the modiﬁer–modiﬁed relation between two nouns as in

			Skt: śvetaḥ aśvaḥ dhāvati।

			Gloss: White horse runs.

			Eng: The white horse runs.

			Skt: aśvaḥ śvetaḥ asti।

			Gloss: Horse white is.

			Eng: The horse is white.

					In both the above sentences, the words aśvaḥ and śvetaḥ have the same gender, number and vibhakti indicating sāmānādhikaraṇya.

					However, there is a subtle difference between the information being conveyed. In the second sentence, the word śvetaḥ is a predicative adjective (vidheya viśeṣaṇa), while in the ﬁrst it is an attributive adjective.

					The other two instances of agreement involve verbal suffix. These cases, one involving a ﬁnite and the other involving a non-ﬁnite verbal suffix, are covered under 2(a) above.

				4.	Certain Indeclinables. Indeclinables mark various kinds of relations such as negation, adverbial (manner adverbs only) and coordination. Sometimes they also provide information about interrogation, emphasis, etc.

					For example, the relation of na with gacchati in the sentence

			Skt: rāmaḥ gr̥ham na gacchati।

			Gloss: Rāma home not goes.

			Eng: Rāma does not go home.

					is that of negation (pratiṣedha). Similarly, the relation of mandam with calati in the sentence

			Skt: rāmaḥ mandam calati।

			Gloss: Rāma slowly walks.

			Eng: Rāma walks slowly.

					is that of adverbial (kriyā-viśeṣaṇa). The relation of eva with rāma in the sentence

			Skt: rāmaḥ eva tatra upaviśati।

			Gloss: Rāma only there sits.

			Eng: Only Rāma sits there.

					is that of emphasis (avadhāraṇa).

				5.	Position. Certain words such as api (also) in different positions have different demands. In sentence initial position, api begins an interrogative sentence. In non-initial positions, it expects a noun or a pronoun before it.

					For example, in the following sentence, api expects a sentence:

			Skt: api sītā gacchati।

			Eng: Does Sītā go?

					And in the following api is just an emphatic/inclusive marker:

			Skt: sītā api gacchati।

			Eng: Sītā also goes.

			3.1.2 What kind of information?

			The relation between a verb and a noun that is instrumental in bringing about the action (or an event) denoted by the verb is termed a kāraka relation. Pāṇini speciﬁes the semantic content of the kāraka relations through various sūtras under the adhikāra sūtra kārake (A 1.4.23). The kāraka relations have a different status from the purely semantic relations such as thematic roles of Western linguistics. There is no one-to-one relation between thematic relations and kāraka relations. One kāraka corresponds to several semantic relations and one semantic relation may correspond to several kārakas (Kiparsky 2009: 48). Below we illustrate with an example a few kāraka relations along with the semantics associated with them.

				1.	Svatantraḥ kartā. Pāṇini deﬁnes kartr̥ as svatantraḥ kartā (A 1.4.54). To understand this sūtra, let us look at the three sentences:

				a.	Devadattaḥ pacati. (Devadatta cooks.)

				b.	Sthālī pacati. (A vessel cooks.)

				c.	Edhāḥ pacanti. (The logs cook.)

					In the real world, devadattaḥ, sthālī (vessel) and edhāḥ (logs) are the agent, the locus and the instrument, respectively. But, according to Pāṇinian grammar, the relations of devadattaḥ, sthālī and edhāḥ with respect to the verbs they follow, in each of the three sentences above are all that of kartr̥. The vārttikas under Pāṇini’s sūtra kārake (A 1.4.23), that explain why all these are kartr̥, go like this:6

			In the sentence devadattaḥ pacati (Devadatta cooks), the activity of cooking refers to the activity of Devadatta, viz. putting a vessel on the stove, pouring water in it, adding rice, supplying fuel, etc. and this activity refers to the activity of the pradhāna kartr̥ (the chief doer of the activity). In the sentence sthālī pacati (a vessel cooks), the cooking activity refers to holding the rice and water till the rice cooks and this activity is that of a vessel. In the sentence edhāḥ pacanti (logs cook), the cooking activity refers to the supply of sufficient heat by a piece of ﬁrewood and thus refers to the activity of an instrument.

					That is, in the sentence devadattaḥ pacati, the verb pac expresses the activities of Devadatta, viz. putting a vessel on the stove, pouring water in it, adding rice, supplying the fuel, etc. Let us denote this meaning of pac by pac1. Among all the participants of the activity, Devadatta is the most independent one and hence is assigned the role of kartr̥. Now, when a speaker wants to highlight the activity of a vessel, undermining the role of Devadatta, he utters a sentence sthālī pacati. In this sentence, the verb pac expresses the activities of a vessel viz. holding the rice and water and supplying the heat uniformly. Let us denote this meaning by pac2. For the activity denoted by pac2, sthālī is the most independent of all the participants. And hence it is assigned the role of kartr̥. And ﬁnally, in the sentence edhāḥ pacanti, the speaker intends to highlight the action of the logs of supplying the fuel. Here the verb pac refers to the activities of the wood. Let us denote this by pac3. For this activity, logs are the most independent of all participants and hence they are assigned the kartr̥ role.

					During the generation process, this kartā, in active voice, is expressed by the agreement of the noun in number and person with the verbal form, and is assigned a nominative case. Thus, in all the three examples listed above, the nominals devadattaḥ, sthālī and edhāḥ are in nominative case and show concord with the verb. It is important to note here that what is expressed by the agreement in number and person is just the kartr̥tva (agenthood) of the pradhāna kartr̥ (chief agent), adhikaraṇa (locus) and karaṇa (instrument), respectively.

					From analysis point of view, the only information available through the linguistic expression is the concord between a noun and a verb. And this concord, as we saw above expresses the kartr̥. Thus only information that can be extracted from the language string is that a noun which shows concord with the verb and which is in nominative case is the kartr̥. The beauty of this analysis lies in the economy. Now one need not have to use any kind of “extralinguistic” information to decide the relation. In order to decide the thematic role of each of these participants, we need to appeal to world knowledge, since the morphemes do not express these relations.

				2.	Ṣaṣṭhī śeṣe (A 2.3.50). The relation between vr̥kṣa (tree) and śākhā (branch) in the phrase vr̥kṣasya śākhā (branch of a tree), between pitr̥ (father) and putra (son) in the phrase pituḥ putraḥ (son of a father) and between rājan (king) and puruṣa (man) in the phrase rājñaḥ puruṣaḥ (king’s man) is marked by the genitive case suffix, and Pāṇini groups all of them under the sūtra ṣaṣṭhī śeṣe (sixth case in the remaining) (A 2.3.50). Semantically however the ﬁrst relation is avayava–avayavī-bhāva (part–whole relation), the second one is janya–janaka-bhāva (parent–child relation) and the third one is sva–svāmī-bhāva (owner–possession relation). Again, in order to decide upon these semantic distinctions, one should know that śākhā is a part of a vr̥kṣa or puruṣa can be a servant of a king. This, then requires world knowledge, organized in a speciﬁc way so that a machine can use it. However, one can mark a general relation, let us call it a ṣaṣṭhī sambandha (genitive relation), in the absence of any such knowledge.7

				3.	Adhiśīṅsthāsām karma (A 1.4.46). Here is another example where Pāṇini focuses on the information marked by a suffix. In the sentences:

			Skt: hariḥ vaikuṇṭham adhiśete।

			Gloss: Hari {nom.} vaikuṇṭha {acc.} sleeps.

			Eng: Hari sleeps in the vaikuṇṭha.

			Skt: muniḥ śilāpaṭṭam adhitiṣṭhati।

			Gloss: Sage {nom.} stone_slab {acc.} sits.

			Eng: A sage sits on a stone slab.

			vaikuṇṭha and śilāpaṭṭa are in the accusative case and Pāṇini assigns them a karman role. However, semantically, both of them are the ādhāras (loci) of the activities of the associated verbs, viz. adhi-śīṅ (to sleep) and adhi-sthā (to sit). Hence the Naiyāyikas, who want to map the śabda jagat (world of words) to vyāvahārika jagat (the real world), ﬁnd it difficult to accept the karmatva of these words and they qualify this karmatva on the second case ending as ādhārasya anuśāsanika-karmatva (imposed karmatva of the locus) (Achyutanand 1991: 141). Thus, there is a disconnect between the real world and what is expressed through the words. But the grammarians restrict themselves to the “world of words” and do not venture into mapping it to the real world. Pāṇini had a choice. The ﬁrst choice is to state this as an exception for assigning a dvitīyā vibhakti (accusative case marker) to the adhikaraṇa kāraka, which, by default takes saptamī vibhakti (locative case marker). And second choice is to assign a different kāraka, thereby not disturbing the kāraka-vibhakti mapping. Pāṇini chose the second alternative over the ﬁrst one. It may be because, Pāṇini considered the thing that is a locus, is also the most desirable one to the kartr̥,8 and hence gets a karman role. Thus we see that the information that is coded in a sentence may be different from the actual reality. During the analysis process, only the information coded in the language string would be extracted. The analysis of thematic relations is differed due to want of world knowledge.

			4. sahayukte ’pradhāne (A 2.3.19). Here is the ﬁnal example. In the sentence:

			Skt: mātā saha bālakaḥ āgacchati।

			Gloss: mother {instr.} with child {acc.} comes.

			Eng: The child comes with her mother.

			the agreement of the verb is with bālakaḥ and not with mātā. According to Aṣṭādhyāyī 2.3.19, saha is used with the apradhāna (subordinate) kāraka. Thus in this example, mātā (mother) is subordinate and bālaka (child) is the pradhāna (primary) kartr̥. However, from the semantic point of view, the situation is reversed. It is the mother who carries the child in her arms, or holds the ﬁnger of a child guiding her and thus bālaka is apradhāna (subordinate) and mātā is the pradhāna-kāraka. Thus again there is a mismatch between the reality and what the sentence actually encodes. And Pāṇini chooses to go with what is encoded in the text.

			From all the above examples, it is clear that the śabdajagat (world of words) is different from the real world. To name the relations reﬂecting their role as experienced in the real world, extralinguistic information is needed. Since the extralinguistic information is not easily accessible and is open-ended, it is possible to mark only syntactico–semantic relations that depend solely upon the linguistic/grammatical information in a sentence, following the grammarians.

			In our parser, in the ﬁrst step, we decided to mark all those relations that can be extracted from the morphemes themselves, without appealing to real-world knowledge. Thus we mark devadatta, sthālī and edhāḥ as kartr̥. Similarly, we mark only the genitive relation and do not further subclassify it into avayava–avayavī-bhāva, pitā–putra-sambandha, etc. In the case of locus marked as a karman with the verbs adhi-śīṅ, adhi-sthā, etc. we mark the relation as a karman and in the case of saha, we mark the relation of kartr̥ with bālaka and not with mātā. Though it is possible to capture the real-world semantics directly in some of the cases, we decided not to go for it, since the kāraka relations, as described by Pāṇini, give us a very clear level of marking the relations purely on the basis of what is encoded in a language string, without appealing to the world knowledge. This also helps us to keep the syntax separate from the semantics.

			3.1.3 Repository of relations

			All the relations described above and many more are mentioned in the Aṣṭādhyāyī and various other books on the theories of śābdabodha, commentaries thereupon, and various other texts dealing with vyākaraṇa. All these relations described in the traditional grammar books have been compiled and classiﬁed by Ramakrishnamacharyulu (2009) under the two broad headings, viz. inter-sentential and intra-sentential relations. Appendix C provides a list of all these relations. These relations were critically examined from the point of view of their usability in an automatic sentential parser (Kulkarni and Ramakrishnamacharyulu 2013). A subset of a little more than thirty relations from this repository were chosen for developing a parser. Appendix D provides a list of these selected relations.

			3.1.4 How is the information encoded?

			Relations are not always encoded explicitly. Sometimes they are coded through a language convention. For example, consider the following example where the verbal arguments are shared:

			Skt: rāmaḥ dugdham pītvā śālām gacchati।

			Gloss: Rāma {nom.} milk {acc.} having_drunk school {acc.} goes.

			Eng: Having drunk milk, Rāma goes to school.

			In this example, there are two verbs – gam and pā. Both these verbs are transitive and thus demand two arguments each, viz. kartr̥ and karman. In the above example, we notice that there are only three nouns, two of which are in the accusative, thus being the karmans for the two verbs. But there is only one noun in the nominative. The nominative case suffix, as seen earlier, just expresses the sāmānādhikaraṇya (coreferentiality) with the ﬁnite verbal suffix. So with this, then, a relation between gacchati and rāmaḥ is established. Now the question is, how does Sanskrit mark the information that Rāma is also a kartr̥ of the activity of drink? We ﬁnd the clue in Pāṇini’s sūtra

			samānakartr̥kayoḥ pūrvakāle – A 3.4.21

			which states that the suffix ktvā is used to denote the preceding of two actions that shares the same kartr̥. So in the above example, the ktvā suffix with the verb pā indicates that the action of drinking took place before the action of going and that the kartr̥ of both the actions is the same. In order to understand which kartr̥tva (agenthood) is marked, we get a hint in Bhartr̥hari’s kārikā.

			Bhartr̥hari in his Vākyapadīyam 3.7.81-82 states:

			pradhānetarayor yatra dravyasya kriyayoḥ pr̥thak।

			śaktir guṇāśrayā tatra pradhānam anurudhyate।।

			– 3.7.81

			When one and the same thing has the power (of being the object) in regard to two actions, the main one and the secondary one, the power in regard to the secondary action follows that in regard to the main one.		– Iyer 1971: 198

			pradhānaviṣayā śaktiḥ pratyayenābhidhīyate।

			yadā guṇe tadā tadvad anuktāpi prakāśate।।

			– 3.7.82

			Where the power (of being the object) relating to the main action is expressed by the verbal suffix, then the one relating to the second action, though not expressed, is understood.	– Iyer 1971: 198

			The following sentences make this point clearer

			Skt: rāmaḥ dugdham pītvā śālām gacchati।

			Gloss: Rāma milk after_drinking to_school goes.

			Eng: Rāma goes to school after drinking milk.

			and

			Skt: rāmeṇa dugdham pītvā śālā gamyate।

			Gloss: by_Rāma milk having_drunk school was gone.

			Eng: The school was visited by Rāma after drinking milk.

			From these two sentences, it is clear that the vibhakti of rāma is governed by the main verb gam. And hence, the information that Rāma is also the kartr̥ of the verb pā is not expressed through any of the suffixes. The ktvā suffix expresses only the precedence relation (pūrvakālīkatva). And then, with the help of Aṣṭādhyāyī 3.4.21, we infer that rāma is also the kartr̥ of the verb pā. Thus we see that language does not code all the relations explicitly. There are certain conventions of the language which facilitate certain implicit coding. Such an implicit coding may be different for different languages. And hence it is also necessary to extract such implicitly encoded information. As an illustration, let us look at the following sentence discussed by Kiparsky (2009: 36):

			Skt: vanāt grāmam adya upetya odanaḥ āśvapatena apāci।

			Gloss: From_the_forest to_the_village today having_come rice by_Āśvapata was_cooked.

			Eng: When Āśvapata came from the forest to the village today, he

			cooked some rice.

			Literally: Having come from the forest to the village today, the rice was cooked by Āśvapata.

			In English, it is the subject that is shared in such constructions. So if we look at the literal translation, we will notice that rice is the subject of the matrix clause and hence from the literal translation in English, an English reader would get the meaning that it is rice which came from the forest. English does not have a scheme to mark the sharing of an object of the matrix clause with the subject of the subordinate clause the phenomenon which we see in the above Sanskrit sentence. So unless we mark these implicit (shared) relations as well, the translation systems may produce wrong translations.

			Another sūtra that deals with the sharing of arguments is

			samānakartr̥keṣu (icchārtheṣu) tumun – A 3.3.158

			which states that in case of verbs expressing desire, the inﬁnitive verb in the subordinate clause will have the same kartr̥ as that of the verb it modiﬁes. Here also the primary information available from the non-ﬁnite verbal suffix tumun is the relation of purpose.9

			Thus in the sentence,

			Skt: rāmaḥ gr̥haṁ gantum icchati।

			Gloss: Rāma home {acc.} to_go wishes.

			Eng: Rāma wants to go home.

			Rāma is marked as a kartr̥ of the verb icchati but is not marked as a kartr̥ of gantum by any suffix. The sharing in the case of suffixes ktvā and tumun is the result of the precondition samānakartr̥katva in Aṣṭādhyayī 3.4.21, and 3.3.158 which act as argument-sharing rules respectively.

			3.2 Sannidhi: Planarity Constraint

			Sanskrit being inﬂectionally rich, the conventional wisdom about Sanskrit word order is that it is free. It is also a common understanding among the linguists that the freeness of word order in Sanskrit is clause-internal. That is, it is not possible to freely interleave the constituents from subordinate clauses with elements from the main clause or other subordinate clauses. Thus the mixing of elements from different clauses is not allowed. The examples discussed by Viśvanātha Pañcānana also point to the same constraint. In order to build a parser, this conventional wisdom needs to be formalized. It is necessary to know whether there are any exceptions to it, and if there are, what is their nature.

			There have been several efforts in the domain of the dependency framework to study the relation between governance and precedence (Bodirsky, Kuhlmann and Möhl 2005; Havelka 2005; Nivre 2006). These studies have resulted in various types of constraints on dependency graphs. These constraints ban some word orders. The strongest among these is the projectivity principle. The less stringent ones are weak non-projectivity and well-nestedness.

			3.2.1 Projectivity principle

			The principle of projectivity states a constraint on the dependency tree which disallows certain dependency structures.

			A sentence is projective if and only if we can draw a dependency tree whose every node can be projected by a vertical line onto its word form in the surface string without crossing another projection or a dependency edge.

			Hudson (1984: 98) calls this projectivity principle the “adjacency principle”.

			Consider the sentence

			Skt: śvetaḥ aśvaḥ dhāvati।

			Gloss: White {nom.} horse {nom.} run {3p. sg.}.

			Eng: White horse runs.

			The following six word orders are possible with the same overall meaning:

			(a)	śvetaḥ aśvaḥ dhāvati।

			(b)	śvetaḥ dhāvati aśvaḥ।

			
				
					[image:]
				

			

			(c)	aśvaḥ śvetaḥ dhāvati।

			(d)	dhāvati śvetaḥ aśvaḥ।

			(e)	aśvaḥ dhāvati śvetaḥ।

			(f)	dhāvati aśvaḥ śvetaḥ।

			Though all these word orders are acceptable and convey the same overall meaning, namely, “a white horse runs”, (a) and (d) are more probable than the others. Figure 3.1 shows the projections of sentences (a) to (f). We notice that sentences (b) and (e) have the projection line (shown by dotted lines) crossing the governance relation (shown by solid lines) showing the violation of the projectivity principle. Let us look at another example (g).

			(g) 	Skt: rāmaḥ dugdham pītvā śālām gacchati।

				Gloss: Rāma {nom.} milk {acc.} drink {absolutive} school 		{acc.} go {3p.sg.}.

				Eng: Rāma goes to school after drinking milk.

			This sentence has five words. Are all the 5! (= 120) combinations meaningful?

			(h)	Skt: *rāmaḥ śālām dugdham gacchati pītvā।

				Gloss: *Rāma {nom.} school {acc.} milk {acc.} go {3p. sg.} 		drink {absolutive}

				Eng: *Rāma to school milk goes drinking.

			
				
					[image:]
				

			

			Sentence (h) which is obtained by permuting the words in sentence (g) does not lead to any verbal cognition, and thus it shows that all permutations are not meaningful. Sentence (h) also violates the projectivity principle. Figure 3.2 shows the governance relation between pītvā and dugdham being crossed by the projection of gacchati.

			Though sentence (h) as well as sentences (b) and (e) show violation of the projectivity principle, there is a difference between the violation in (h) on the one hand and the violation in (b) and (e) on the other. The violation in (h) is an example of sannidhi violation of utthita ākāṅkṣā while (b) and (e) are examples of sannidhi violation of utthāpya ākāṅkṣā. Thus there is need to distinguish between these two types of violation; the distinction is not captured by the projectivity principle.

			
				
					[image:]
				

			

			3.2.2 Weak non-projectivity (planarity)

			It is possible to draw the dependency graphs for (b) and (e) by rearranging the nodes to avoid the crossing of the projection lines by the dependency relations. Figure 3.3 shows possible graphs for (b) and (e) that avoid crossing. However, there is no rearrangement of the nodes of (h) that will avoid crossing. We capture this difference by relaxing the projectivity constraint. Instead of considering the crossing between the two types of relations, viz. projection and dependency, we consider only the crossing between the dependency relations with a further constraint that the nodes of the dependency structure be represented in a linear order that reﬂects the surface order of the words in the sentence they represent. Such a dependency graph is weakly non-projective if there are no crossing of edges. If all the edges are drawn on the same side of a sentence (either below or above), such a graph results in a planar graph.

			
				
					[image:]
				

			

					Deﬁnition: A graph is weakly non-projective or planar, if it does not have two edges wi ↔ wj and wk ↔ wl with i < k < j < l.

			Thus every projective structure is weakly non-projective, but the reverse is not true.

			
				
					[image:]
				

			

			Let us look at the sentences (b), (e) and (h) above. All these were found to be non-projective. But as we notice in fig. 3.4, the sentences (b) and (e) do not have crossing edges in their linear projection. Hence these are weakly non-projective or planar. But fig. 3.5 shows the crossing of edges which makes sentence (h) non-planar.

			3.2.3 Empirical evaluation

			Now that we have a precise mathematical criterion for evaluating the sannidhi violation, we look at a small corpus of prose sentences and verses. Below we discuss some cases where we found a violation of sannidhi.

			
				
					[image:]
				

			

			Dislocation of a Genitive

			We give below two examples of dislocation of a genitive discussed by Gillon (1996).

			(7)	Skt: tayoḥ baddhayoḥ kim-nimittaḥ ayam mokṣaḥ। – ASG 14.1.2			Gloss: of_those of_prisoners what_basis this release?

				Eng: What basis does the release of the two prisoners have?

			A copulative verb asti is supplied in the dependency structure. The two Indian schools Vyākaraṇa (grammar) and Nyāya (logic) differ in the analysis of sentences with missing copulative verbs. The Vyākaraṇa school supplies the missing copulative verb asti10 and then establishes relations between the substantive and its predicative adjective through this verb, while the Nyāya school establishes the relation between the substantive and the predicative adjective directly. We follow the Vyākaraṇa school. The non-planar and planar dependency graphs are shown in fig. 3.6. As one can see, the crossing links involve the verb asti and the position of this verb is crucial in the planarity of the dependency graph. If the verb asti is placed in juxtaposition with the word kim-nimittaḥ then there is no crossing. The verb asti in this sentence has only two arguments. In example (8) (fig. 3.7) below, where there are more than two arguments, the linear representation of the sentence has crossing of links no matter where the copulative verb is placed.

			
				
					[image:]
				

			

			(8)	sarvatra audārikasya abhyavahāryam eva viṣayaḥ। – ASG 1.1.2

				In every case, a glutton’s object is only food.

			Dislocation of a Viśeṣaṇa

			Example (9) (fig. 3.8) shows the evidence of sannidhi violation due to dislocation of an adjective. We supply the missing copulative verb bhavanti following the Vyākaraṇa school.

			(9)	ete hi hr̥daya-marma-bhidaḥ saṁsāra-bhāvāḥ। – ASG 8.1.3

				For, these worldly things are heart breakers.

			Here the position of the missing copulative verb bhavanti dictates the crossing of links. Certain positions of bhavanti lead to crossing of links; others do not.

			
				
					[image:]
				

			

			Dislocation Involving Other Relations

			Example (10) is a case where the relations involved in sannidhi violation are other than viśeṣaṇa and genitive (fig. 3.9).

				(10) aham manda-autsukyaḥ asmi nagara-gamanam prati।

			– ASG 3.1.3

				I am (one who is) little eager about going to the city.

			The edge marking the non-kāraka relation between the words manda-autsukyaḥ and prati crosses the edge between the kartr̥ relation between aham and asmi.

			The word order in verse, though free, is constrained by the metrical considerations. In order to study the effect of metrical considerations on sannidhi, we analysed all the verses of the Bhagavadgītā. A total of nine cases of anomalous behaviour were found. Of these, in seven cases both of the relations involved in crossing were the kāraka relations. In two cases there was crossing of an adverb with a kāraka relation. We discuss these cases below.

			
				
					[image:]
				

			

			Sannidhi Violation Involving Kartr̥ and Karman

			Five among the nine anomalous cases had the kartr̥ relation of one verb crossing with the karman relation of another verb. These instances are examined below:

			(11)	cañcalaṁ hi manaḥ kr̥ṣṇa pramāthi balavaddr̥ḍham।

					tasya aham nigraham manye vāyoḥ iva suduṣkaram।।

				– Bhagavadgīta VI.34

			Oh Kr̥ṣṇa! the mind is ﬁckle, turbulent, obstinate and strong, hence I think it is as difficult to control the wind.

			
				
					[image:]
				

			

			In the second line of this verse the main verb is manye whose kartr̥ is aham. The karman of the verbal noun nigraham is the pronominal tasya, which refers to manaḥ in the ﬁrst sentence. Thus the word sequence tasya aham nigraham manye produces two crossing edges involving the relations of kartr̥ and karman (fig. 3.10).

			
				
					[image:]
				

			

			(12)	dhūmo rātriḥ tathā kr̥ṣṇaḥ ṣaṇmāsā dakṣiṇāyanam।

					tatra cāndramasaṁ jyotiḥ yogī prāpya nivartate।।

			– Bhagavadgītā VIII.25

			The yogī on travelling the path of smoke, night, the dark half of the month and the six months of the southern path (of the sun) after death, obtains the lunar light and returns (to this world).

			The second example with similar crossing of kartr̥ and karman was found in verse in the Bhagavadgītā VIII.25. In this verse, in the word sequence jyotiḥ yogī prāpya nivartate, jyotiḥ is the karman of the absolutive verb prāpya and yogī is the kartr̥ of the verb nivartate resulting in the crossing (fig. 3.11).

			(13)	vaktum arhasy aśeṣeṇa divyāḥ hy ātmavibhūtayaḥ।

					yābhiḥ vibhūtibhiḥ lokān imān tvam vyāpya tiṣṭhasi।।

			– Bhagavadgītā X.16

			You could tell me about your divine manifestations by which you exist pervading these worlds.

			
				
					[image:]
				

			

			The third example is from Bhagavadgītā X.16. Here the word sequence lokān imān tvam vyāpya tiṣṭhasi results in crossing edges with lokān being the karman of vyāpya and tvam being the kartr̥ of tiṣṭhasi (fig. 3.12).

			(14)	aśraddadhānāḥ puruṣāḥ dharmasya asya parantapa।

					aprāpya māṁ nivartante mr̥tyusaṁsāravartmani।।

				– Bhagavadgītā IX.3

			Oh Parantapa! those who have no faith in this dharma return to the circle of death and rebirth without attaining me.

			The fourth example is from Bhagavadgītā IX.3, where the dependency arrow corresponding to the karman of the kr̥danta a-śraddadhānāḥ crosses the arrow corresponding to the kartr̥ of the main verb nivartante (fig. 3.13).

			
				
					[image:]
				

			

			(15)	tān samīkṣya saḥ kaunteyaḥ sarvān bandhūn avasthitān।।

			– Bhagavadgītā I.27cd

					kr̥payā parayā āviṣṭaḥ viṣīdan idam abravīt।

				– Ibid. I.28ab

			Seeing all these relatives present there (on the battleﬁeld) Kaunteya ﬁlled with compassion uttered these words in dejection.

			
				
					[image:]
				

			

			In Bhagavadgītā I.27-28 also we ﬁnd the crossing of the dependency arrows pointing to a kartr̥ and a karman. Bandhūn is the karman of the absolutive samīkṣya and kaunteya is the kartr̥ of the verb abravīt, and the edges marking these relations cross (fig. 3.14). In this example if we choose tān, which is an adjective of bandhūn as the karman of samīkṣya, then this crossing vanishes! This, in fact, happens to be an example of cataphora and would be analysed as in fig. 3.15.

			
				
					[image:]
				

			

			Sannidhi Violation Involving Karman and Kriyā-viśeṣaṇa

			In Bhagavadgītā I.37, the relation of karman of the absolutive hatvā is crossed by the kriyā-viśeṣaṇa of the main verb syāma (fig. 3.16).

			
				
					[image:]
				

			

			(16)	tasmāt na arhāḥ vayaṁ hantuṁ dhārtarāṣṭrān svabāndhavān।

					sva janaṁ hi kathaṁ hatvā sukhinaḥ syāma mādhava।।

			– Bhagavadgītā I.37

			Therefore Oh Mādhava! it is not suitable on our part to kill our relatives, for by killing our own kinsmen, the sons of Dhr̥tarāṣṭra, how can we remain happy?

			
				
					[image:]
				

			

			A similar example is found in Bhagavadgītā XI.32 where the relation of kartr̥ crosses with that of an adjective.

			Sannidhi Violation Involving Karman and Apādāna

			The last example is from the last chapter of the Bhagavadgītā. Here the karman of the non-ﬁnite verb kathayataḥ crosses the relation of apādāna between śrutavān and kr̥ṣṇāt (fig. 3.17).

			(17)	vyāsaprasādāt śrutavān etad guhyam aham param।

					yogam yogeśvarāt kr̥ṣṇāt sākṣāt kathayataḥ svayam।।

			– Bhagavadgītā XVIII.75

			By the grace of Vyāsa I have heard this supreme secret yoga directly from the Lord of Yoga, Kr̥ṣṇa.

			3.2.4 Conclusion

			Planarity (or weak non-projectivity) is the precise characterization of the sannidhi constraint. Sannidhi violation leads to non-planar graphs. The number of violations is much greater in verse than in prose. This may be attributed to metrical considerations. The behaviour of utthita (mutual) and utthāpya (unilateral) ākāṅkṣās (expectancies) are different. Mutual expectancies are tightly coupled and the words that have mutual expectancy are always in close proximity (sannidhi). In contrast, a word that has unilateral expectancy (utthāpya ākāṅkṣā) may be moved away from its relatum and its relational path may be interrupted by one or more words unrelated to them.

			Two major relations involved in sannidhi violation in both prose and verse are the viśeṣaṇa and the genitive. Some of the other relations involved in sannidhi violation are sambodhana (vocative), negation, precedence and simultaneity. All these relations have unilateral expectancy and thus correspond to utthāpya ākāṅkṣā.

			
				
					
						
						
						
						
					
					
						
								
								Table 3.1: Kāraka Chart for the Verb Jānā (to go)

							
						

						
								
								Case Relation

							
								
								Degree of

								Necessity

							
								
								Case Marker

							
								
								Semantic

								Constraint

							
						

						
								
								apādāna

							
								
								desirable

							
								
								se

							
								
								not (upādhi: vehicle)

							
						

						
								
								karaṇa

							
								
								desirable

							
								
								se

							
								
								upādhi: vehicle

							
						

						
								
								karman

							
								
								mandatory

							
								
								0/ko

							
								
								–

							
						

						
								
								kartr̥

							
								
								mandatory

							
								
								0

							
								
								–

							
						

					
				

			

			3.3 Yogyatā: Semantic Restrictions

			As seen above, the concept of ākāṅkṣā provides clues for establishing relations and sannidhi provides some constraints on the possible combinations of relations. It is not the case that all the relations proposed by ākāṅkṣā would be meaningful. In order for a relation between two words to be meaningful, the corresponding word meanings should be mutually compatible (yogya) with reference to that relation.

			The ﬁrst attempt to use the concept of yogyatā in the ﬁeld of machine translation was by Bhanumati (1989) in the Telugu–Hindi machine translation system. Selectional restrictions were used in deﬁning the kāraka charts that provided a subcategorization frame as well as selection restrictions over the arguments of the verbs. On similar lines noun lakṣaṇa charts and verb lakṣaṇa charts were also used for disambiguation of noun and verb meanings. These charts expressed selectional restrictions using both ontological concepts as well as semantic properties. An example kāraka chart for the Hindi verb jānā (to go) is given in Table 3.1.

			Here upādhi is an imposed property. The ﬁrst row in Table 3.1 states a constraint that a noun with the case marker se has a kāraka relation of apādāna (source) provided it is not a vehicle. The ontological classiﬁcation was inspired by the ontology that originated in the Vaiśeṣika school of philosophy. By using such ontological classiﬁcations, the parsers for Indian languages were further improved. Bharati, Chaitanya and Sangal (1995) mention the importance of two semantic factors in parsing, viz. animacy and humanity, that remove the ambiguity between the kartr̥ and karman kāraka. This hypothesis was further strengthened with experimental veriﬁcation by Bharati et al. (2008).

			3.3.1 Selection restriction

			In Western linguistics, a concept similar to yogyatā is termed selection restriction. A selection restriction imposes a semantic constraint on the arguments that ﬁll the slots in subcategorization frames. These selection restrictions are of two types. The ﬁrst one is S-selection or semantic selection, and the second one is C-selection or category selection. The C-selection is more syntactic in nature and thus it is synonymous with the concept of subcategorization frames. The S-selection is introduced to block the generation of sentences such as colourless green ideas sleep furiously. The S-selection, being semantic in nature, is closed to the concept of yogyatā in Indian tradition.

			Katz and Fodor (1963) proposed a model of selection restrictions as necessary and sufficient conditions for semantic acceptability of the arguments of a predicate. Identifying a selection restriction that is both necessary and sufficient is a very difficult task. Hence there were attempts to propose alternatives. One such alternative was proposed by Wilks (1975) who viewed these restrictions as preferences rather than necessary and sufficient conditions. After the development of WordNet, Resnik (1993) modelled the problem of induction of selectional preferences using the semantic class hierarchy of WordNet. Since then there is an upsurge in the ﬁeld of computational models for the automated treatment of selectional preferences with a variety of statistical models and machine-learning techniques. In recent times, an ambitious project to represent world knowledge was taken up under the banner of Cyc. This knowledge base contains over 500,000 terms, including about 17, 000 types of relations and about 7 million assertions relating these terms.11 In spite of the availability of such a huge knowledge base, we rarely ﬁnd Cyc being used in NLP applications.

			Some computational grammatical frameworks incorporate both subcategorization as well as selection restriction together in the lexicon. They are used to capture the world knowledge or the facts about the world which are generally but not necessarily true. As such, they can’t account for metaphoric usages. Nevertheless, they are very much useful in ﬁltering out ill-formed sentences or in word-sense disambiguation, anaphora resolution, syntactic disambiguation, etc.

			3.3.2 Śabda-śakti (Level of signiﬁcation)

			All the above efforts primarily rely on the primary meaning of words. We saw earlier, in Indian theories of meaning, the relation between a word and its meaning, termed śakti (signiﬁcative power) is classiﬁed into three types, viz. abhidhā (primary relation), lakṣaṇā (implication) and vyañjanā (suggestion). In order to use the concept of yogyatā (mutual compatibility) in designing a parser, we should know whether there is any hierarchy among word meanings or all the signiﬁcative powers of a word come into play simultaneously.

			Let us see an example to seek the answer to this question. Consider the following sentence:

			Skt: yānam vanam gacchati।

			Gloss: vehicle {nom./acc.} forest {nom./acc.} goes.

			Both the nouns, viz. yāna (vehicle) and vana (forest), are in neuter gender and can be analysed either as singular nominatives or as singular accusatives. The verb gam (to go) is transitive and hence has an expectancy for a kartr̥ as well as a karman. Gacchati (goes) being in the active voice (kartari prayoga), its kartr̥ would be in the nominative case and its karman would be in the accusative case. Thus both the words yānam and vanam can potentially satisfy the ākāṅkṣā of both kartr̥ and karman of gacchati. Thus there are two12 possible analyses that fulﬁl the ākāṅkṣās:

				1.	yāna as the kartr̥ and vana as the karman of the action of going, and

				2.	vana as the kartr̥ and yāna as the karman of the action of going.

			While syntactically both these possibilities arise, are they both also semantically valid? Vana in the sense of a forest, which is its abhidheyārtha (primary meaning), cannot be the kartr̥ of gacchati owing to the fact that the action of going has an expectancy of a movable object as its kartr̥. Thus there is a violation of yogyatā (congruity) between the abhidheyārthas (primary meanings) of vana and gam. However, if we extend13 the meaning of vana to the people living in the speciﬁc forest under discussion, then vana has yogyatā to be the kartr̥ of the action of going. Thus we see that resorting to either abhidhā or lakṣaṇā, we could make sense of both syntactically possible analyses produced by the parser based on the ākāṅkṣā.

			However, we also note that these two analyses are not on an equal footing. Let us ask whether a human being gets both these interpretations when he listens to this sentence? In a normal situation, when one listens to this sentence, he gets only one śābdabodha, viz. that “A vehicle is going to the forest”. But if there is a proper context, say for example, a new vehicle is found near a forest, and all the people living in the forest were anxious to see this vehicle. And thus all of them go to (see) the vehicle. In such a situation, vana, in the extended sense, would be the kartr̥. Thus we see that the analysis involving abhidhā is unmarked and hence becomes the ﬁrst probable interpretation whereas the second sense is marked by its context. Therefore, provided there is a proper context, even the second reading is possible.

			Mīmāṁsakas and rhetoricians discuss the usage of lakṣaṇā. The very ﬁrst condition for the use of lakṣaṇā is mukhyārthabādha (inapplicability/unsuitability of the primary meaning). If the ﬁrst analysis satisﬁes abhidhā, one cannot go for lakṣaṇā. And thus the second analysis, which uses lakṣaṇā, is blocked.

			This constraint is further elaborated in the barhirnyāya section of Mīmāṁsā. Devasthali (1959: 53) states:14

			Of the senses, viz. mukhya and gauṇa it is only the mukhya which is to be accepted as being conveyed by the mantra and it alone has to be connected with the enjoined act, which when applied to similar case, means that words, as far as possible, must be understood as conveying their mukhyārtha alone, . . .

			Further with regard to the use of the secondary meaning, Mīmāṁsā very clearly observes:15

			Lakṣaṇā is resorted to only as a means to avoid ānarthakyadoṣa and that it can be resorted to only if the literal sense is found to be unsuitable in the context; and that too only as the last resort.

			– Devasthali 1959: 59

			Thus, according to Mīmāṁsakas, lakṣaṇā is a doṣa (fault). Only if the abhidhā (primary relation) does not make any sense and leaves the sentence anarthaka (having no meaning), should one use the lakṣaṇā.16

			Rhetoricians also have the same stand with regard to lakṣaṇā. They accept three conditions as necessary for a word to denote the implied/extended/metaphoric sense. These three conditions are the following:17

				1.	Inapplicability/unsuitability of the primary meaning,

				2.	some relation between the primary meaning and the extended meaning, and

				3.	deﬁnite motive justifying the extension.

			Of course, there are exceptions to these rules. These exceptions are those where secondary meaning is included along with the primary meaning, such as ajahad-lakṣaṇā and jahad–ajahad-lakṣaṇā. In order to decide whether to use only primary meaning or both the primary and the secondary meaning in a given situation, we need to know the intention of the speaker.

			Having decided the hierarchy between the primary and extended meanings, now let us turn to the suggestive meaning. Consider the sentence gato ’stam arkaḥ discussed earlier, which literally means “the sun has set”. Every listener gets this meaning. But in addition, depending on who is uttering it, and to whom, there are different suggestive meanings and these meanings coexist with the primary meaning. They do not block the primary meaning. Therefore vyaṅgyārtha exists in parallel with the primary/secondary meaning.

			It is also clear that the suggestive meanings are different for different persons and may also differ in different situations. So it is not possible to objectively process this meaning for a given utterance. It involves subjectivity. And hence it is outside the scope of automatic processing which is constrained by objectivity. This also puts an upper limit on the meaning one can get from a linguistic utterance without the intervention of subjective judgements.

			In summary, we observe that these three meanings are not in the same plane. Lakṣaṇā comes into play only when abhidhā fails to provide a suitable meaning for congruent interpretation. The suggestive meaning, however, can coexist with the abhidhā as well as the lakṣaṇā and, as such, is outside the scope of automatic processing with the existing tools and resources.

			These observations then lead us to the following strategy for mechanical processing. First restrict the meanings to abhidhā to get the analysis. In case no analysis produces a congruous interpretation in terms of abhidhā, use lakṣaṇā. Leave the interpretation of vyañjanā to the reader. Let us see in what follows, how easy/difficult it is to mechanically distinguish between abhidhā and lakṣaṇā.

			3.3.3 Yogyatā as a ﬁlter

			The necessary condition for understanding a sentence is that a word having an expectancy for another word should become nirākāṅkṣā (having no further expectancy) once a relation is established between the two words. Further, such related words should also have mutual compatibility from the point of view of the proposed relation. If they are not mutually compatible, then the expectancy of such words will not be put to rest and there will not be any verbal cognition. Therefore the role of yogyatā in verbal cognition is very important. The purpose of using yogyatā in parsing is not to make a computer understand the text, but to rule out incompatible solutions from among the solutions that fulﬁl the ākāṅkṣās. For example, in the sentence

			Skt: yānam vanam gacchati।

			Gloss: vehicle {neut., sg., nom./acc.} forest {neut., sg., nom./acc.} goes.

			There are six possible analyses, based on the ākāṅkṣā. They are:

				1.	yānam is the kartr̥ and vanam is the karman,

				2.	yānam is the karman and vanam is the kartr̥,

				3.	yānam is the kartr̥ and vanam is the viśeṣaṇa of yānam,

				4.	yānam is the karman and vanam is the viśeṣaṇa of yānam,

				5.	yānam is the viśeṣaṇa of vanam which is the kartr̥, and

				6.	yānam is the viśeṣaṇa of vanam which is the karman.

			If the machine knows that the kartr̥ of an action of going should be movable and that the designation of yāna is movable, but that of vana is not movable, then mechanically it can rule out the second analysis. The words yānam and vanam on account of the agreement between them have the potential to be viśeṣaṇas of each other. But the semantic incompatibility between the meanings of these words rules out the last four possibilities, leaving only the ﬁrst correct analysis.

			As another example, look at the sentence:

			Skt: rāmeṇa bāṇena vālīḥ ahanyata।

			Gloss: Rāma {instr.} arrow {instr.} Vāli was killed.

			Eng: Vāli was killed by Rāma with an arrow.

			Either rāma or bāṇa, since both are in instrumental case, can potentially be a kartr̥ or a karaṇa of the verb han (to kill). If the machine knows that bāṇa can be used as an instrument in the act of killing, while rāma being the name of a person, cannot be a potential instrument in the act of killing, it can then ﬁlter out the incompatible solution: Rāma as a karaṇa and bāṇa as a kartr̥.

			Look at another sentence:

			Skt: payasā siñcati।

			Gloss: Water {instr.} sprinkles.

			Eng: (He) sprinkles with water.

			Here payas (water) is in the instrumental case, denotes a liquid, and hence is suitable to be the instrument of the action of siñc (to sprinkle).

			But in the sentence,

			Skt: vahninā siñcati।

			Gloss: Fire {instr.} sprinkles.

			Eng: (He) sprinkles with ﬁre.

			vahni (ﬁre) is not ﬁt to be an instrument of the action of sprinkling and as such it fails to satisfy the yogyatā. Now in such cases, in spite of the word meanings being incompatible, we know that a listener still understands the sentence, and also knows that there is incompatibility between the meanings. However, the cognition of the listener is not a valid cognition and thus, Naiyāyikas would not agree that there is any verbal cognition, since for them the verbal cognition has to be a valid cognition, śabda being one of the means of valid cognition. However, Vaiyākaraṇas, while interpreting a sentence, resort to the “world of words” and not to the real world. And hence for them the cognition does take place with such sentences as well. But then, if the meanings are not mutually compatible, then how does verbal cognition take place? It is because, when the primary meanings are not compatible, the secondary/metaphoric meanings come into effect and the mutual compatibility is established.

			We explain this further with the previous example. Imagine the following situation in which vahninā siñcati is uttered. Let there be a person in a bad mood, and his friend, without knowing this, starts accusing him further for some fault of his, instead of uttering some soothing words to console him. A third person watching this utters kim vahninā siñcasi? (Why are you sprinkling with ﬁre?); a perfect verbalization of the situation. The friend’s accusation is like ﬁre to the person who is already in a bad mood. This meaning of vahni is its extended meaning. Even a Naiyāyika would accept such an interpretation. Thus, even if a relation between the primary meanings does not make sense, if the relation between extended meanings makes sense, we need to produce the parse. Thus, in addition to the primary meanings, machine also, sometimes, needs access to the secondary/extended meanings of the words.

			3.3.4 Modelling Yogyatā

			Yogyatā is compatibility between the meanings of related words. This meaning, as we saw above, can be either a primary or a metaphoric one. Absence of any hindrance in the understanding of a sentence implies there is yogyatā or congruity among the meanings. There have been different views among scholars about what yogyatā is. According to one deﬁnition, yogyatā is arthābādhaḥ18 (that which is not a hindrance). It is further elaborated as bādhakapramāvirahaḥ19 or bādhakaniścayābhāvaḥ20 (absence of the decisive knowledge of incompatibility). There are other attempts to deﬁne it as an existing qualifying property. One such deﬁnition is sambandha-arhatvam21 (eligibility for mutual association) and the other one is paraspara-anvaya-prayojaka-dharmavattvam22 (the property of promoting mutual association). The ﬁrst set of deﬁnitions presents yogyatā as an absence of incompatibility whereas the second set of deﬁnitions present it as the presence of compatibility between the meanings.

			Let us see the implications of modelling yogyatā through these two lenses:

			1. We establish a relation only if the two morphemes are mutually congruous. In this case we need to take care of not only the congruity between primary meanings but even the same between the metaphoric/secondary meanings.

				2. We establish a relation if there is no incongruity between the two meanings.

			The ﬁrst possibility ensures that the precision is high and there is less chance of Type-1 error, i.e. of allowing wrong solutions. The second possibility, on the other hand, ensures that the recall is high and there is less chance of Type-2 error, viz. the possibility of missing any correct solution with a possibility that we allow some meaningless solutions as well. If we decide to go for the ﬁrst possibility, we need to handle both the primary and the secondary meanings, and we need to state precisely under what conditions the meanings are congruous. This means modelling congruity for each verb and for each relation. This is a gigantic task and there is a possibility of missing correct solutions, if we do not take into account all the possible extensions of meanings. Therefore, we decided to go for the second choice allowing a machine to make some mistakes in choosing incongruous solutions but we did not want to throw away correct solutions even by mistake. This decision is in favour of our philosophy of sharing the load between man and machine. Our aim is to provide access to the original text by reducing the language learning load. So we cannot afford to miss a possible solution. Thus at the risk of providing more solutions than the actual possible solutions, we decided to pass on some load to the reader of pruning out irrelevant solutions manually.

			In the ﬁrst step, we decided to use yogyatā only in those cases where a case marker is ambiguous between more than one relation. We noticed the following three cases of ambiguities with reference to the relations.

				1.	Viśeṣya–viśeṣaṇa-bhāva (adjectival relation). Here both the viśeṣya and the viśeṣaṇa agree in gender, number and case, and hence only on the basis of the word form, we cannot tell which one is viśeṣya and which one is viśeṣaṇa.

			2. A kāraka and non-kāraka relation as in

				a. karaṇa (an instrument) and hetu (cause), both expressed through an instrument case marker,

				b.	sampradāna (a beneﬁciary), prayojana (purpose) and tādarthya (being intended for), all the three relations encoded with a dative case marker, and

				c.	apādāna (source) and hetu (cause), both being marked by an ablative case marker.

			3. Ṣaṣṭhī sambandha (genitive relation) and viśeṣaṇa (adjective). When two words are in the genitive case, it is not clear whether there is an adjectival relation between them or a genitive relation.

			Let us now discuss each of these three cases.

			Viśeṣya–Viśeṣaṇa-bhāva

			We come across a term samānādhikaraṇa (coreference) in Pāṇini to denote an adjective (Joshi and Roodbergen 1998: 6). One of the contexts in which the term samānādhikaraṇa is used is the context of an agreement between an adjective and a noun.23 For example, dhāvantam mr̥gam (a running deer) or sundaraḥ aśvaḥ (a beautiful horse). Pāṇini has not deﬁned the term samānādhikaraṇa, either. The term samānādhikaraṇa literally means “having the same locus”. Patañjali in the Samarthāhnika discusses the term sāmānādhikaraṇya. In the example, sundaraḥ aśvaḥ (a beautiful horse), both the qualities of saundarya (beauty) and aśvatva (horseness) reside in an aśva (horse), which is the common locus. Similarly, in the case of ācāryaḥ droṇaḥ or agne gr̥hapate (Oh Agni! householder), both the words ācārya as well as droṇa refer to the same individual, so do agni and gr̥hapati. This is true of various other relation-denoting terms such as guru, śiṣya, pitā and putra, and upādhis (imposed/acquired properties) such as rājā, mantrī and vaidya. From all this discussion, we may say sāmānādhikaraṇya is the semantic characterization of a viśeṣaṇa.

			English has a separate morphological category for adjective. Similarly in Hindi, the morphology of adjective is different from that of the substantives (nouns). But in Sanskrit, there is no syntactic/morphological category as a viśeṣaṇa (an adjective). Morphologically, in Sanskrit, the adjectives and substantives are indistinguishable. But, gender, number and case of a viśeṣaṇa follow that of a viśeṣya (the head). From the point of view of analysis this provides a syntactic clue for a possible viśeṣya–viśeṣaṇa-bhāva between two words such as in śuklaḥ paṭaḥ (a white cloth). This agreement is just a necessary condition, and not sufficient. Because, a viśeṣaṇa, in addition to agreeing with the viśeṣya, should also be semantically ﬁt to be a qualiﬁer of the viśeṣya. For example, there can be two words say yānam (a vehicle) and vanam (a forest) that match perfectly in gender, number and case, but we cannot imagine a viśeṣya–viśeṣaṇa-bhāva between yāna and vana. Is it only the semantics that rules out such a relation or are there any clues, especially syntactic ones, that help us to rule out a viśeṣya–viśeṣaṇa-bhāva between such words?

			In Search of Clues. Pāṇini has not deﬁned the terms viśeṣya and viśeṣaṇa. Patañjali uses two terms dravya (substance) and guṇa (quality) while commenting on the agreement between a viśeṣya and a viśeṣaṇa.

			yad asau dravyam śrito bhavati guṇaḥ tasya yat liṅgam vacanam ca tad guṇasya api bhavati। 	– Mahābhāṣya under A 4.1.3, vārtika VI

			A quality assumes the gender and number of the substance in which it resides.

			But then What Is This Guṇa? We come across the description of guṇa by Kaiyaṭa.

			sattve niviśate apaiti pr̥thag jātiṣu dr̥śyate।

			ādheyaścākriyājaśca saḥ asattva-prakr̥ti-guṇaḥ।।

			– Ibid., A 4.1.44, reference from Kaiyaṭa

			Guṇa is something which is found in things/substances sattve niviśate, which can cease to be there (apaiti), which is found in different kinds of substances (pr̥thag jātiṣu), which is sometimes an effect of an action and sometimes not so (ādheyaścākriyājaśca), and whose nature is not that of a substance (asattvaprakr̥ti).

			Thus guṇa is something which is not a substance, since it resides in other things. It is not a universal, since it is found in different kinds of substance. It is not an action, since guṇa is sometimes an effect of an action, as in the case of the colour of a jar and sometimes, not, as in the case of the magnitude of a substance. This characterization of guṇa is very close to the Vaiśeṣika’s concept of guṇa (Kunjunni Raja 1963).

			Then, Is This Vaiśeṣika Guṇa a Viśeṣaṇa? Patañjali commenting on the word guṇa under Aṣṭādhyāyī 2.2.11 provides an example contrasting two types of guṇas. While both śukla and gandha are qualities (guṇa) according to the Vaiśeṣika ontology, the usage śuklaḥ paṭaḥ (a white cloth) is possible, while gandham candanam (fragrance sandalwood) is not. Thus, only some of the Vaiśeṣika guṇas have the potential to be a viśeṣaṇa, and not all.

			If Viśeṣaṇa Is not a Vaiśeṣika Guṇa, What Is It? The characterization of guṇa by Bhartr̥hari in his Guṇa-Samuddeśa includes bhedakam as one of the characteristics of guṇa. But, in addition, guṇa, according to him, is also capable of expressing the degree of quality in a substance through a suffix. He deﬁnes guṇa as

			saṁsargī bhedakam yad yad savyāpāram pratīyate।

			guṇatvam paratantratvāt tasya śāstra udāhr̥tam।।

			– Vākyapadīya III.5.1

			Whatever rests on something else (saṁsargī), differentiates it (bhedaka) and is understood in that function (savyāpāra) is, being dependent, called quality in the śāstra. 	– Iyer 1971

			According to Bhartr̥hari, a quality is that which is intimately related (saṁsargī) to a substance and differentiates (bhedaka) that substance delimiting its scope. Apart from being a differentiator, a guṇa has another important characteristic, that such a distinguishing quality can also express the degree of excellence through some suffix (such as a comparative suffix tarap or a superlative suffix tamap). This concept of guṇa of Bhartr̥hari, thus, is different from the concept of the guṇa of a Vaiśeṣika. This deﬁnitely rules out the case of gandha, since we cannot have gandhatara but we can have śuklatara to distinguish the whiteness between two white cloths. Nāgeśa in his Udyota, under Mahābhāṣya in sūtra A2.1.1, explains savyāpāram as follows:

			A quality is such that it invariably represents its substratum and by presenting its substratum it enters into the domain of meaning of a word which expressed that quality. Alternatively, a quality is such that it invariably represents all the individuals delimited by that quality. 	– Matilal 1985: 388

			This explanation of a guṇa is nothing but the guṇa-vacana of Pāṇini.

			Guṇa-vacana of Pāṇini. We have another hint from Pāṇini through Patañjali. While in Aṣṭādhyāyī 4.1.3, Patañjali has used the terms dravya and guṇa in connection with agreement, in Aṣṭādhyāyī 1.2.52 he has used the term guṇa-vacana while describing a viśeṣaṇa.

			guṇavacanānāṁ śabdānāmāśrayataḥ liṅgavacanāni bhavantīti

			– Mahābhāṣya on A 1.2.52

			The words which are guṇa-vacanas take the gender and number of the substance in which they reside.

			The term guṇa-vacana is used for those words which designate a quality and then a substance in which this quality resides (Cardona 2009). In the example, śuklaḥ paṭaḥ, since śukla, in addition to being a quality (white colour), can also designate the substance, such as a paṭa (cloth), which is (white) in colour, it is a guṇa-vacana. But gandha (fragrance) designates only a quality and cannot be used to designate a substance that has a fragrance, and hence is not a guṇa-vacana word.

			Is Guṇa-vacana Necessary and Sufficient to Describe a Viśeṣaṇa? Let us look at the examples above. It deﬁnitely rules out yānam and vanam to be qualiﬁers of each other, since neither of them is a quality. But then what about dhāvan (the one who is running) in dhāvan bālakaḥ (a running boy)? Is dhāvan a guṇa-vacana?

			Guṇa-vacana is a technical term, used by Pāṇini, to deﬁne an operation of elision of matup suffix in certain quality denoting words such as śukla. So technically, a word such as dhāvan, though it designates a dravya (substance), is not a guṇa-vacana. This is clear from Patañjali’s commentary on Aṣṭādhyāyī 1.4.1,24 where he states that compounds (samāsas), primary derivatives (kr̥dantas), secondary derivatives (taddhitāntas), indeclinables (avyayas), pronouns (sarvanāmas), words referring to universals (jātis) and numerals (saṅkhyā) cannot get the designation guṇa-vacana, since the latter saṁjñās (technical terms) supersede the previous ones.25

			The very fact, that Kātyāyana had to mention that words belonging to all the latter categories are not guṇa-vacana, indicates that all these categories of words have a potential to get the guṇa-vacana designation, but Pāṇini did not intend to assign this saṁjñā to these words. This list of various categories, in fact, provides us a morphological clue for a word to be a viśeṣaṇa. Thus we observe that the notion of guṇa-vacana in Pāṇini is very empirical and is useful to formulate the semantics necessary for processing Sanskrit texts.

			Here are some examples of viśeṣaṇas belonging to these different grammatical categories:

				1.	Samāsa (a compound). Bahuvrīhi (exocentric) compounds refer to an object different from the components of the compound and thus act as adjectives. For example, pītāmbaraḥ is made up of two components pīta (yellow) and ambara (cloth), but it refers to the “one wearing a yellow-cloth” (and is conventionally restricted to Viṣṇu). An example of a tat-puruṣa (endocentric) compound as a viśeṣaṇa is parama-udāraḥ (extremely noble).

				2.	Kr̥danta (an adjectival participle). Nouns derived from verbs act as qualiﬁers of a noun. For example, in the expression dhāvantam mr̥gam (a running deer), dhāvantam, a verbal noun, is a viśeṣaṇa. Only certain kr̥t suffixes such as śatr̥, śānac and kta produce nouns that can be viśeṣaṇas, not all.

				3.	Taddhitānta (a secondary derivative). Taddhitāntas with certain suffixes derive new nouns such as bhāratīya (Indian), dhanavāna (wealthy) and guṇin (possessing good qualities) that denote a dravya (substance), as against certain other taddhitānta words such as manuṣyatā (humanity) vārddhakya (senility) which derive new words designating guṇas (qualities).

				4.	Sarvanāma (a pronoun). Pronouns also act as qualiﬁers. For example, in an expression idam pustakam (this book), idam is a viśeṣaṇa.

				5.	Jāti (a universal). In the expression āmraḥ vr̥kṣaḥ (a mango tree), both the words āmraḥ and vr̥kṣaḥ designate common nouns. But one is a special and the other one a general one. So the designation of āmra is a subset of the designation of vr̥kṣa. Only in such cases, where there is a parājāti–aparājāti (hyponymy–hypernymy) relation, the one denoting an aparājāti (hyponymy) qualiﬁes to be a viśeṣaṇa of the other one.

				6.	Saṅkhyā (a numeral). In an expression ekaḥ puruṣaḥ (a man), the word ekaḥ designates a number, and is a viśeṣaṇa of puruṣa.

			There are still two more classes of words that are not covered in the above list, but which can be viśeṣaṇas. They are: words denoting an acquired property or an imposed property and the relation denoting terms. For example, ācārya in ācāryaḥ droṇaḥ or putra in daśarathaputraḥ rāmaḥ.

			In summary, samasta-pada, certain kr̥dantas, certain taddhitāntas, saṅkhyā, sarvanāma, ontological categories such as parā–aparā jātis, semantico-syntactic property such as guṇa-vacana and ﬁnally semantic properties such as relation denoting terms and upādhis, all these serve as characterizations of a viśeṣaṇa. This characterization is only a necessary condition, and not sufficient, since it does not involve any mutual compatibility between the words. However, it brings in more precision in the necessary conditions for two words to be in viśeṣya–viśeṣaṇa-bhāva.

			Deciding a Viśeṣya. Once we have identiﬁed the words that are mutually compatible with regard to an adjectival relation, next thing is to decide the viśeṣya (head) among them. The commentary on Aṣṭādhyāyī 2.1.57 is useful in deciding the viśeṣya. This sūtra deals with the compound formation of two words that are in viśeṣya–viśeṣaṇa-bhāva. In Sanskrit compound formation, the one which is subordinate gets the designation of upasarjana. The sūtras that provide a condition for assigning the technical term upasarjana give us clues about which word classes are subordinate to which ones. The words may refer to a dravya (substance) through a common noun (jāti) such as utpalam (a ﬂower), or through an action associated with it (kriyā-vacana), as in dhāvan (running), or through a guṇa-vācaka such as nīlam. If there are two words indicating common nouns, one denoting a special noun and the other one denoting a general noun, then the one which denotes a special type of common noun is subordinate.26 For example, in āmraḥ vr̥kṣaḥ, āmra is a special kind of tree, and hence is a viśeṣaṇa and vr̥kṣa is its viśeṣya. If one word designates a common noun and the other one is either a guṇa-vacana or a kriyā-vacana, then the one denoting the guṇa-vacana becomes the viśeṣya.27 Thus in nīlam utpalam, utpalam is the viśeṣya. In pācakaḥ brāhmaṇaḥ (cook brāhmaṇa), brāhmaṇaḥ is the viśeṣya. When one of the words designates a guṇa-vacana and the other a kriyā-vacana, or both the words designate either guṇa-vacanas or kriyā-vacanas, then either of them can be a viśeṣya, as in khañjaḥ kubjaḥ (a humpbacked who is limping) or kubjaḥ khañjaḥ (a limping person with humpback), similarly as in khañjaḥ pācakaḥ (a limping cook) or pācakaḥ khañjaḥ (a limping person who is a cook), etc.

			On the basis of the above discussion, we have the following preferential order for the viśeṣya:

			jātivācaka > {guṇa-vacana, kr̥danta}.

			We saw earlier that a viśeṣaṇa can be any one of the following: a pronoun, a numeral, a kr̥danta, a taddhitānta, a samasta-pada, guṇa-vācaka, jāti, relation-denoting terms and an upādhi. So adding all these categories to the above preferential order, we get:

			jāti-vācaka > upādhi > taddhitānta > guṇa-vacana > numeral > kr̥danta > pronoun.28

			Flat or Hierarchical Structure? After we identify all the words that have a samānādhikaraṇa relation between them and mark the viśeṣya (the head) among them, the next task is to know whether a viśeṣaṇa is related to this viśeṣya directly or through other viśeṣaṇas.

			If there are n viśeṣaṇas and all of them are related to the viśeṣya directly, then it results in a ﬂat structure. But if a viśeṣaṇa is related to the viśeṣya through other viśeṣaṇas, then there is an exponentially large number of ways in which n viśeṣaṇas can relate to the viśeṣya. For example, if there are three words say a, b and c, of which c is the viśeṣya. Then there are three ways in which the other two words can relate to c.

				1.	Both a and b are the viśeṣaṇas of c.

				2.	a is a viśeṣaṇa of b and b that of c.

				3.	b is a viśeṣaṇa of a and a that of c.

			In positional languages like English, only the ﬁrst two cases are possible. For example, consider the phrase “light red car”, which may either mean a car which is red in colour and is light in weight, or a car which is light-red in colour. In the second case, light-red is a compound.

			Sanskrit being a free word-order language, one can imagine, computationally, a possibility for the third type as well. The relation between the adjectival terms being that of sāmānādhikaraṇya, semantically, only a ﬂat structure is possible with adjectives. The other two cases of hierarchical structures result into compound formation in Sanskrit.

			This is also supported by Jaimini’s Mīmāṁsāsūtra:

			guṇānām ca parārthatvāt asambandhaḥ samatvāt syāt। – 3.1.22

			Inasmuch as all subsidiaries are subservient to something else and are equal in that respect, there can be no connection among themselves. 		– Jha 1933: 373

			Thus, a viśeṣaṇa is not connected to another viśeṣaṇa. The associated structure is a ﬂat one, with all the viśeṣaṇas being connected to the viśeṣya.

			Distinguishing a Kāraka from a Non-kāraka

			In Sanskrit, some case markers denote both a kāraka relation as well as a non-kāraka relation, as we saw earlier. In a sentence, if a verb denotes an action, then nouns denote the participants in such an action. These participants, which are classiﬁed into six types, viz. kartr̥, karman, karaṇa, sampradāna, apādāna and adhikaraṇa, are collectively called as kārakas. Other nouns in the sentence, which do not participate directly in the action, express non-kāraka relations such as hetu (cause) and prayojanam (purpose). We get a clue to distinguish between the nouns which are related by a kāraka relation and those which are related by a non-kāraka one in the Aruṇādhikaraṇa of the Śābara-Bhāṣya. There it is mentioned:

			na ca amūrta-arthaḥ kriyātāḥ sādhanaṁ bhavatīti।

				– Śābara-Bhāṣya, p. 654

			No unsubstantial object can ever be the means of accomplishing an act.

			Thus anything other than dravya cannot be a kāraka. As we saw earlier, the guṇa-vacanas also can designate a dravya. And thus, all the dravyas and the guṇa-vacanas are qualiﬁed to be a kāraka. And the rest, that is nouns which denote either a guṇa, which is not a guṇa-vacana or a kriyā (verbal noun), may have a non-kāraka relation with a verb.

			Let us see some examples.

			Skt: rāmaḥ daśarathasya ājñayā rathena vanam gacchati।

			Gloss: Rāma {nom.} Daśaratha {gen.} order {ins.} ratha {ins.} for-

			est {acc.} goes.

			Eng: On Daśaratha’s order, Rāma goes to the forest by a chariot.

			Skt: rāmaḥ adhyayanena atra vasati.

			Gloss: Rāma {nom.} study {ins.} here lives.

			Eng: Rāma lives here in order to study.

			In the ﬁrst sentence ājñā (order) is the cause (hetu) for Rāma’s going to forest, ratha (chariot) is the instrument (or vehicle) for his going and in the second sentence adhyayana is the cause (hetu) of Rāma’s stay.

			Since both hetu as well as karaṇa demand a third case suffix, ākāṅkṣā would establish a relation of karaṇa between ājñayā and gacchati,29 between rathena and gacchati and also between adhyayana and gacchati. Now with the above deﬁnition of a kāraka, adhyayana, being a verbal noun (a kr̥danta) in the sense of bhāva, represents an abstract concept and therefore it does not designate a dravya (a substance). Hence adhyayana cannot be a karaṇa. Similarly ājñā, which is a guṇa (according to Vaiśeṣika ontology, being a śabda), cannot be a karaṇa. Thus use of congruity helps in pruning out impossible relations.

			On the same grounds, establishment of apādāna and sampradāna relations between a non-dravya30 denoting noun and a verb can also be prevented.

			Congruous Substantive for a Ṣaṣṭhī (Genitive)

			Pāṇini has not given any semantic criterion for the use of the genitive case. His rule is ṣaṣṭhī śeṣe (A 2.3.50) which means, in all other cases that are not covered so far, the genitive case suffix is to be used. The relations expressed by ṣaṣṭhī (genitive) fall under the utthāpya (to be raised) ākāṅkṣā. This is a case of unidirectional expectancy. Thus, there is no syntactic clue as to with which noun the word in the genitive case would get attached. All other nouns in the sentence are potential candidates for a genitive relation to join with. The clue is, however, semantic. Patañjali in the Mahābhāṣya on Aṣṭādhyayī 2.3.50 provides some semantic clues. He says there are hundreds of meanings of ṣaṣṭhī. Some of them are sva–svāmī-bhāva as in rājñaḥ puruṣaḥ (a king’s man), avayava–avayavī-bhāva as in vr̥kṣasya śākhā (branch of a tree), etc. So in order to establish a genitive relation, we need the semantic inputs. However, there are certain constraints. They are:

				1.	A genitive connecting a verbal noun expressing bhāva, such as lyuṭ, expresses a kāraka31 relation and not the genitive one, as in rāmasya gamanam.

				2.	A genitive always connects with a viśeṣya and never with a viśeṣaṇa, since there is a samānādhikaraṇa relation between the viśeṣya and viśeṣaṇa. For example, in the expression rāmasya vīreṇa putreṇa, the genitive relation of rāmasya is with putreṇa and not with vīreṇa.

			Lexical resources such as Sanskrit WordNet32 and the Amarakośa33 that are marked with the semantic information of part–whole relation, janya–janaka-bhāva (child–parent relation), ājīvikā relation, etc. help in identifying the genitive relations with conﬁdence. When both the words refer to two dravyas (substantives), then also there is a genitive relation. So note that, while for other relations, we look for the absence of non-congruity for ruling out the relations, in the case of genitives, instead, we look for the presence of congruity, to prune out impossible relations. We took this decision, since we found it difficult to describe the non-congruity in the case of genitive relations.

			Ambiguity between a Genitive and an Adjectival Relation. We come across an ambiguity in the genitive relation, in the presence of adjectives since an adjective carries the gender number and case of the head it modiﬁes. Look at the following two examples:

			Skt: vīrasya rāmasya bāṇam.

			Gloss: brave {gen.} Rāma {gen.} arrow.

			Eng: An arrow of brave Rāma.

			and

			Skt: rāmasya putrasya pustakam.

			Gloss: Rāma {gen.} son {gen.} book.

			Eng: A book of Rāma’s son.

			In these examples, the relation between Rāma and bāṇa in the ﬁrst example, and between putra and pustaka in the second example is that of genitive. However, the relation between vīra and Rāma in the ﬁrst example is the adjectival relation, and not the genitive one while the relation between Rāma and putra in the second example is a kinship relation.

			3.3.5 Evaluation

			As stated earlier, ākāṅkṣā states the possibility of relations between two words. The mutual compatibility between the meanings further helps in pruning out the incompatible relations. We classiﬁed the content nouns into two classes: dravya and guṇa. Guṇas being further marked if they are guṇa-vacanas. We tested the mutual compatibility only when the suffix is ambiguous. To be precise, the yogyatā is used only to disambiguate between a kāraka vs non-kāraka relation, to establish the viśeṣya–viśeṣaṇa-bhāva and to establish a genitive relation. This ensured that we do not miss on the metaphoric meanings. In the case of kāraka relations, if the noun denotes a guṇa-vacana, then the possible kāraka relation, on the basis of expectancy, is pruned out. Similarly, in the case of adjectival relations, the relations with a non-guṇa-vācaka guṇa is pruned out.

			The performance of the system with and without yogyatā was measured to evaluate the impact of yogyatā. The corpus for evaluation of sentences consists of around 2,300 sentences. It includes sentences with various grammatical constructions, a few passages from school textbook, the Bhagavadgītā and a sample from Māgha’s Śiśupālavadham. The ślokas in the Bhagavadgītā as well as in the Śiśupālavadham were converted to a canonical form.34 The sentences with conjunction were not considered for the evaluation, since the nouns in conjunction conﬂict with the adjectives and the criteria for handling conjunction are under development. The statistics showing the size of various texts, the average word length and the average sentence length is given in Table 3.2.

			
				
					
						
						
						
						
						
						
					
					
						
								
								Table 3.2: Corpus Characteristics

							
						

						
								
								Type

							
								
								Sentences

							
								
								Words

							
								
								Characters

							
								
								Average Sentences Length

							
								
								Average Word Length

							
						

						
								
								Textbooks

							
								
								260

							
								
								1,295

							
								
								9,591

							
								
								4.98

							
								
								7.4

							
						

						
								
								Syntax

							
								
								937

							
								
								3,339

							
								
								25,410

							
								
								3.56

							
								
								7.61

							
						

						
								
								Māgha’s Śiśupālavadham

							
								
								66

							
								
								623

							
								
								5,851

							
								
								9.4

							
								
								9.39

							
						

						
								
								Bhagavadgītā

							
								
								940

							
								
								5,698

							
								
								42,251

							
								
								6.06

							
								
								7.41

							
						

						
								
								Total/average

							
								
								2,203

							
								
								10,955

							
								
								83,103

							
								
								4.96

							
								
								7.58

							
						

					
				

			

			All these sentences were run through a parser, ﬁrst without using the conditions of yogyatā and second time using the conditions of yogyatā. In both the cases, the parser produced all possible parses. We also ensured that the correct parse is present among the produced solutions. Table 3.3 shows the statistics providing the number of solutions with and without using the ﬁlter of yogyatā. The number of parses produced was reduced drastically. This improved the precision by 63 per cent in textbook stories, by 67 per cent in the grammatical constructs and by 81 per cent in case of the text from the Bhagavadgītā and Māgha’s kāvya. Better results in the case of these texts pertains to the fact that these texts have more usage of adjectives and non-kāraka relations as against the textbook sentences and artiﬁcial grammatical constructs.

			
				
					
						
							
							
							
							
							
						
						
							
									
									Table 3.3: Improvement

								
							

							
									
									Corpus Type

								
									
									Sentences

								
									
									Average Solutions without Yogyatā

								
									
									Average Solutions with Yogyatā

								
									
									Improvement in

									Precision %

								
							

							
									
									Textbooks

								
									
									260

								
									
									39.76

								
									
									14.56

								
									
									63

								
							

							
									
									Syntax

								
									
									937

								
									
									19.5

								
									
									6.33

								
									
									67

								
							

							
									
									Literary

								
									
									66

								
									
									11,199

								
									
									2,107

								
									
									81

								
							

							
									
									Bhagavadgītā

								
									
									940

								
									
									2,557

								
									
									478

								
									
									81

								
							

							
									
									Total

								
									
									2,203

								
									
									1,440

								
									
									271.49

								
									
									81

								
							

						
					

				

			

			3.4 Conclusion

			In this chapter, we have seen how the three factors, viz. ākāṅkṣā, yogyatā and sannidhi, are useful in the development of a sentential parser.

			Ākāṅkṣā plays an important role in establishing relations between words of a sentence. It provides clues to look for the source of information that expresses an expectancy. Pāṇinian grammar, together with various commentaries and the texts on śābdabodha, provides us the repository of relations between the words in a sentence and the associated semantics. It is also important to note what is expressed through the morphemes explicitly and what is coded implicitly by the conventions of the language. In the parse structure, we represent only the explicitly encoded information. The implicitly encoded information is inferred from various other sources and thus needs extra processing. If this implicit information also is coded, then the parse structure ceases to be a tree. However, this information is very much useful for handling divergences among languages.

			All the arguments that correspond to the utthita ākāṅkṣā (mutual expectancy) always follow weak non-projectivity. But the expressions that correspond to the utthāpya ākāṅkṣā (unilateral expectancy) experience more freedom and move around the sentence violating even weak non-projectivity. The genitive relation and adjectival relation are the two important relations that fall under this category. These observations are important for building a parser. This thus helps in pruning out all non-solutions thereby reducing the possible number of parsed trees.

			Among the three signiﬁcative powers of a word, there is a hierarchy. The metaphoric meaning comes into play only when the primary meaning is non-congruous with the meaning of other words. In a given context, only one of these would be relevant and operational. Suggestive meaning, however, can exist in parallel with any of these two. And as such, it is not mechanically processable without extralinguistic information.

			It is difficult to provide information of mutual congruity for each word (since this involves handling of both primary and secondary meanings). Among the several deﬁnitions of yogyatā, we modelled it as an absence of non-congruity. This ensures that the correct solutions are not missed. Due to lack of any syntactic criterion for viśeṣaṇa (adjectives) in Sanskrit, parsing Sanskrit texts with adjectives resulted in high number of false positives. Hints from Vyākaraṇa texts helped us in the formulation of a criterion for viśeṣaṇa with syntactic and ontological constraints, which provided us a hint to decide the absence of non-congruity between two words with respect to the adjectival relation. A simple two-way classiﬁcation of nouns into dravya (substance) and guṇa (quality) with further classiﬁcations of guṇas into guṇa-vacanas was found to be necessary for handling adjectives. The same criterion was also found useful to handle the ambiguities between kāraka and non-kāraka relations.

			Finally, the fact that there cannot be an adjective of an adjective, having identiﬁed a viśeṣya, there is only one way all the viśeṣaṇas can connect with the viśeṣya. This theoretical input provided much relief from practical point of view, in the absence of which possible solutions would have been exponential.

			

			
				
					1		The concept akin to ākāṅkṣā in the phrase structure grammar is subcategorization frames where a verb is subcategorized into intransitive, transitive and bi-transitive according to the structure of verb phrase it is associated with. This concept is similar to the concept of valency of the dependency grammar of Tesniére. The only major difference between valency and the subcategorization frame is, valency also counts the subject as one argument while the earlier subcategorization frames took the subject for granted. The modern computational frameworks such as Head-driven Phrase Structure Grammar (HPSG) or Tree Adjoint Grammar (TAG) mark subject as a dependent argument. These subcategorization frames provide the speciﬁcations of the number and the syntactic category of the arguments a verb takes. For example, the subcategorization frames for the verbs sleep, eat and give are given below:

					sleep [NP _]

					eat [NP _ (NP)]

					give [NP _ NP NP]/[NP _ NP to NP],

					where the argument in parenthesis is optional.

					The subcategorization is normally discussed with reference to verbs. But such subcategorization frames are also needed for other lexical categories such as nouns, adjectives. These frames are part of speaker’s knowledge of the word, based on its usage, and thus more a part of a lexicon than grammar.

				

				
					2		śaktigraham vyākaraṇopamānakośāptavākyād vyavahārataśca।

					vākyasya śeṣād vivr̥ter vadanti sānnidhyataḥ siddh	apadasya vr̥ddha।। – Nyāyasiddhāntamuktāvalī, Joshi 1985

				

				
					3		tiṅkr̥ttaddhitasamāsaiḥ parisaṅkhyānam – Ma. Bhā. 2.3.1 vā

				

				
					4		kartari kr̥t – A 3.4.68

				

				
					5		kartr̥karmaṇoḥ kr̥ti – A 2.3.65

				

				
					6		adhiśrayaṇodakāsecanataṇḍulāvapanaidho ’pakarṣaṇakriyāḥ pradhānasya kartuḥ pākaḥ। – Ma. Bhā. 1.4.23, vā 8

					droṇam pacatyāḍhakam pacatīti sambhavanakriyā dhāraṇakriyā cādhikaraṇasya pākaḥ।। – Ma. Bhā. 1.4.23, vā 9

					edhāḥ pakṣyantyā viklitter jvaliṣyantīti jvalanakriyā karaṇasya pākaḥ।। – Ma. Bhā. 1.4.23, vā 10

				

				
					7		See the discussion under Sect. 3.3 (Yogyatā) for the usefulness of such knowledge.

				

				
					8		kartuḥ īpsitatamam karma – A 1.4.49

				

				
					9		tumunṇvulau kriyāyām kriyārthāyām – A 3.3.10

				

				
					10		astir bhavantīparaḥ prathamapuruṣo ’prayujyamāno ’pyasti।

									– A 2.3.1, vt. 11

				

				
					11		www.cyc.com/kb (accessed on 30 August 2017).

				

				
					12		There are four more other possibilities with yāna as the adjective of vana and vice versa, with each vana and yāna as either kartr̥ or karman. But in order to focus on the aspect of the level of signiﬁcation, we have ignored these possibilities here.

				

				
					13		The Vaiyākaraṇas consider this extended meaning also as an abhidhā.

				

				
					14		tasmānmukhyagauṇayormukhye kāryasampratyaya iti siddham। – Jha 1936: 751

				

				
					15		yadāñjasyena śabdārtho nāvakalpate tadā lakṣaṇayāpi kalpyamānaḥ sādhurbhavati।

															 – Śabarabhāṣya 2.2.6

				

				
					16		saptadaśāratnī nyāya। – Devasthali 1959: 58

				

				
					17		mukhyārthabādhe tadyoge rūḍhito ’tha prayojanāt।

					anyo ’rtho lakṣyate yat sā lakṣaṇāropitā kriyā।। – Kāvyaprakāśa II.9

				

				
					18		arthābādhaḥ yogyatā – Tarkasaṁgraha, p. 30

				

				
					19		Nyāyakośa, p. 675.

				

				
					20		Ibid., p. 676.

				

				
					21		Vākyārthamātr̥kāvr̥tti, p. 9.

				

				
					22		Tattvacintāmaṇi, vol. III.	

				

				
					23		sāmānādhikaraṇyam ekavibhaktitvam ca। dvayoścaitad bhavati। kayoḥ। viśeṣaṇa-viśeṣyayoḥ vā saṁjñā-saṁjñinorvā। – Mahābhāṣya 1.1.1

				

				
					24		The vārttika guṇavacanam ca is followed by several other vārttikas, of which the following two are relevant:

					samāsakr̥ttaddhitāvyayasarvanāmāsarvaliṅgā jātiḥ।।

					saṅkhyā ca।।

				

				
					25		guṇavacanasaṁjñāyāḥ ca etābhiḥ bādhanam yathā syāt iti।

				

				
					26		sāmānyajāti-viśeṣajātiśabdayoḥ samabhivyāhāre tu viśeṣajātireva viśeṣaṇam। – under Aṣṭādhyāyī 2.1.57, in BM

				

				
					27		jātiśabdo guṇakriyāśabdasamabhivyāhāre viśeṣyasamarpaka eva na tu viśeṣaṇa samarpakaḥ, svabhāvāt – under Aṣṭādhyāyī 2.1.57, in BM

				

				
					28		This preferential order is purely based on some observations of the corpus and needs further theoretical support, if there is any.

				

				
					29		To be precise, the relation is between the meaning denoted by the nominal stem ājñā and the one denoted by the verbal root gam.

				

				
					30		To be precise, a non-dravya and non-guṇa-vacana.

				

				
					31		kartr̥karmaṇoḥ kr̥ti। A 2.3.65

				

				
					32		http://www.cﬁlt.iit b.ac.in/wordnet/webswn/english_version.php

				

				
					33		http://scl.samsaadhanii.in/amarakosha/index.html	

				

				
					34		All the ślokas were presented in their anvita form, following the traditional daṇḍānvaya method, where the verb typically is at the end, and viśeṣaṇas precede the viśeṣyas.

				

			

		

	
		
			4

			Sanskrit Parsing

			4.1 Introduction

			In this chapter we describe the parsing algorithms for dependency parsing that are developed based on the theories described in previous chapters. A dependency parser produces a parsed structure showing the dependency relations between the words of a given sentence. Regarding the input to a Sanskrit parser, there are two concerns:

			1. The ﬁrst concern is related to segmentation. Sanskrit being most often written as a continuous string of phonemes, due to the inﬂuence of an oral tradition, the question is whether we design a parser to allow a continuous string or should we insist on a segmented text.

			2. The second concern is about the genre of the text. Most of the Sanskrit literature is in the form of poetry. Poetry enjoys more freedom with respect to the word order than the prose. So the question is, whether we develop a general parser that can handle both poetry as well as prose or only one of them, preferably prose to start with.

			We saw in Chap. 2 that in the commentarial tradition, the sentential analysis is preceded by the segmentation (padaccheda), word analysis (pada-paricaya) and compound word analysis (vigraha), followed by an anvaya. Anvaya helps in identifying the relations between words. Therefore, it is reasonable for a parser module, which deals with the sentential analysis, to expect a segmented text with word analysis. Regarding the genre of the Sanskrit text, we noticed that the commentators rewrite the original verse as a prose following the canonical word order. This suggests that it is easy to understand a prose in canonical order than the one in non-canonical order or in the form of a verse. From this we infer that it should be comparatively easier to develop a parser that handles sentences in canonical order compared to verses or sentences in non-canonical form.

			Ideally, from the user’s perspective, the parser should allow both an unsegmented and a segmented text, as well as texts in both canonical and non-canonical order, as an input. When the input is a continuous string, the parser should call a segmenter module to split the given continuous string into words, undoing the sandhi at the word junctures. However, there is a practical difficulty with this step. It is possible that there are more than one way of splitting a given string. And the user would be interested in only one or a few of the analyses, and not all possible analyses. This calls for an interface that allows a user to select the segmentation for which a parse is needed. Alternatively it is also possible to weed out the non-sensical segmentations with a feedback from the parser.

			We decided to allow both an unsegmented text as well as a segmented text as an input to a parser. If the input is an unsegmented text, then it is passed through the Heritage segmenter1 which shows all possible morphologically valid segments of a text. The interactive intelligent user interface (Huet and Goyal 2016) allows a user to select correct segments. The interface intelligently prunes out all those segments that are morphologically incongruent during each user selection. It is also possible to call a parser on all possible segmentations, without the requirement of any human intervention. However, since this increases the complexity, the current implementation does not allow this possibility. When a user chooses a desired segmentation, as a next step the words need to be placed in the canonical word order. In order to change the word order to the canonical word order, an interface is provided that allows a user to drag the words and place them in the desired position. Alternately, user may also choose to enter a manually segmented text where the external sandhi between the words is split into morphologically valid words and the components in a compound are also separated by hyphens. It is assumed that such a segmented text is in canonical order. The segmented text, along with the analysis of each word, is forwarded to the parser. Figure 4.1 shows the ﬂow and interaction between various modules such as segmenter, word analyser, user interfaces and parser.

			In the design of a parser, thus, it is assumed that its input is segmented and is in the canonical word order.

			
				
					[image:]
				

			

			4.1.1 Dependency parse structure

			In Chap. 1 we have seen the śābdabodhas of various schools. Theories of śābdabodha provide the details of sources of various kinds of information encoded in a language string and how this information collectively produces the verbal import. We also noticed that the schools differ among each other in their śābdabodhas. Major difference is with respect to the mukhya-viśeṣya (the chief-qualiﬁcand). While for the grammarians the chief-qualiﬁcand is the activity of the verb, for the logicians the one in the nominative case is the chief-qualiﬁcand. There are other minor differences as well, such as which morpheme codes what kind of information and how the information ﬂows in a sentence. There is ample literature discussing the merits and limitations of the śābdabodhas of each school. But any discussion on these is out of the scope of the present monograph. Interested readers may refer to Subbarao (1969). As far as the kāraka and non-kāraka relations are concerned, all the schools follow the Pāṇinian model at a gross level.

			We decided to follow the śābdabodha of Vaiyākaraṇas, since they depend only on the words for their analysis and do not use any extralinguistic information in their analysis. They believe in the “world of words”. And this provides us a natural cut for the level of semantics which can be arrived at solely on the basis of the information available in the language string. This is the level of the semantics that is represented in the dependency parse.

			Let us relook at the Vaiyākaraṇas’ śābdabodha reproduced in fig. 4.2. In this ﬁgure the morphemes are shown in ovals and their denotations are shown in squares connected by dotted lines. The solid lines joining the denotations of various morphemes produce the verbal import.

			The śābdabodha describes the chief qualiﬁcand in terms of its qualiﬁers and hence the arrows are towards the root node representing the chief qualiﬁcand. For example, in fig. 4.2 the activity denoted by the main verb is described as qualiﬁed by various kārakas participating in that action. And hence the arrows are directed towards the activity denoted by the main verb. In this description, over and above the denotations of various morphemes, what is important are the two indirect relations shown by solid lines, between the denotation of rāma and gam, and the denotations of vana and gam. These relations denote the roles of the denotations of rāma and vana with respect to the activity denoted by gam. These roles are termed as kartr̥ and karman, respectively. It is these roles which are important to get the semantics associated with the sentence. All other information shown in fig. 4.2 is necessary to infer these roles. And once the role is inferred, all the information leading to the inference becomes redundant. Suppressing all these minute details, we represent the dependency parse compactly showing only these roles as in fig. 4.3. In this compact representation, the roles are shown between the words themselves rather than the denotations of the involved morphemes. The root node of this dependency tree is the predicate. The directed edge between the nodes is labelled with the role of the word at the head node. Thus all the arrows in this representation are directed away from the root node. This representation exhibits the complete information. It is a better representation than fig. 4.2, from the reader’s perspective. The label on the directed edge indicates the role of the denotation of the head node with respect to the denotation of the tail node.

			
				
					[image:]
				

			

			This compact dependency parse is a tree structure. Does this tree structure faithfully represent the gist of the content of śābdabodha? In order to seek answer to this question, we have the following observations based on the śābdabodha structure.

			
				
					[image:]
				

			

			1. According to the Mīmāṁsakas, a sentence is an integral unit conveying a single purpose,2 and when it is split in two parts, some words in one part would have an expectancy for some other words in the other part. This implies that each word in a sentence either satisﬁes an expectancy of or has an expectancy for some other word in a sentence. That is every word in a sentence should be connected with at least one other word in it. Let us represent the words in a sentence by the nodes and the expectancies between words by edges joining the nodes. Then, the above criterion of a sentence implies that there are at least n ¡ 1 edges if there are n words in a sentence.

			2. Two nodes connected by an edge do not have the same status. One of them has an expectancy and the other one satisﬁes the expectancy. Hence we use directed edges to mark this asymmetry. The node at the head of a directed edge satisﬁes the expectancy of the node at its tail.

			3. A word (pada3) in Sanskrit consists of a prakr̥ti (root) and a pratyaya (suffix).4 Every such suffix marks explicitly only one role5 (or satisﬁes only one expectancy) of some other word in the sentence. If these roles are represented by edges between the words, then there can be at the most n edges between n words.

				4. Every ﬁnite verbal suffix marks either a kartr̥ or a karman or an action. When it marks a kartr̥ (karman), the noun that satisﬁes the kartr̥ (karman) expectancy is in the nominative case, which does not mark any semantic role, over and above the role marked by the verbal suffix. When the verbal suffix marks an action, it does not mark any semantic role. Thus there can be at the most n ¡ 1 edges between n words.6

				5. From 1 to 4 above, we conclude that there are exactly n ¡ 1 directed edges in the dependency structure.

				6. For the parse to be complete, each word has to be connected to at least one other word in a sentence, and there are only n ¡ 1 edges. This implies there are no loops in the structure.

				7. This structure with n nodes, each node representing a word in a sentence, and n ¡ 1 directed edges marking the expectancies between the words, without any loops, thus, represents a Directed Acyclic Graph (DAG).

				8. This DAG is a tree since every node satisfies only one expectancy.

				9. It is also a rooted tree with the root denoting the sentential head. Since we follow the Vaiyākaraṇa’s śabdabodha, in which the activity denoted by the main verb is the chief-qualiﬁcand, in the dependency-parsed structure we posit the main verb as the root node of the tree. In this dependency parse we represent only those relations that are marked explicitly. As discussed in Chap. 3, the information of implicit relations is also important. However, we mark this information in a different way so as to distinguish it from the one that is marked explicitly. This is to ensure that we do not lose the rooted tree structure of the dependency parse.

			As an example, the dependency parse of the following sentence is shown in fig. 4.4:

			Skt: tapasvī vālmīkiḥ tapas-svādhyāya-niratam vāg-vidām varam munipuṅgavam nāradam paripapr̥ccha 	(1)

			Gloss: Who_performs_penance Vālmīki constantly_engaged_in_penance and_self_study among_the_wise_men greatest greatest_among_sages to_Nārada asked.

			English: Vālmīki, who performs penance, asked Nārada, the greatest among sages, the greatest among the wise men, who is constantly engaged in penance and self-study.

			
				
					[image:]
				

			

			In this dependency structure, the node labels also include the word position. The position is included to distinguish between two occurrences of the same word in a sentence. Note also that the relations are shown between the words. Thus a relation of kartr̥ is shown between vālmīkiḥ and paripapr̥ccha. It would have been more appropriate to mark this relation between the prātipadikam (nominal stem) vālmīki and the dhātu (verbal root) pari_pr̥ch. Since such a representation may hamper the readability, we have marked the relations between the words themselves.

			4.2 Design of a Parser

			We ﬁnd two main approaches towards the design of a dependency-based parsing. They are grammar-based and data-driven. The link parser based on link grammar formalism and the minipar based on Chomsky’s minimalism are among the grammar-based dependency parsers for English. The data-driven dependency parsers are the state-of-the-art parsers. They use supervised machine learning algorithms to train the machine on the set of annotated corpus. These parsers thus need manually annotated corpus for training, called tree banks. Among these parsers, we come across two dominating approaches. They are graph-based dependency parsing and transition-based dependency parsing. The graph-based approach creates a parser model that assigns scores to all possible dependency graphs and then use maximum spanning tree methods from graph theory for getting the highest-scoring dependency graph. The transition-based approach scores transitions between parser states based on the parse history and then follow a greedy approach and produce a single parse corresponding to the highest-scoring transition sequence that derives a complete dependency graph. For more details refer to Attardi 2006; McDonald and Nivre 2007; McDonald et al. 2005; Nakagawa 2007; Nivre 2006; Yamada and Matsumoto 2003.

			Most of the natural language parsers call a Part of Speech (POS) tagger and a chunker before invoking a parser. These two modules reduce the ambiguity due to multiple morphological analyses. A POS tagger selects the best part of speech in the context, and a chunker groups all the auxiliary verbs with the main verbs, the post-positions with the noun and multi-word expressions as one chunk. The head of such chunks is marked which relates to other words/heads of other chunks in a sentence. The POS taggers and chunkers ease the task of a parser, by reducing the ambiguities at the morphological level. However, the disadvantage of calling these modules before a parser is that the errors may get cascaded.

			 Our parser differs from the state-of-the-art parsers in three ways. First, in the absence of any annotated corpus, we follow the grammar-based approach. Second, our parser is invoked right after the morphological analyser. The main reason behind this decision was, when we looked at various Indian literature, there was no discussion on any kind of POS tagger or chunker. Moreover, use of chunker also presupposes that dependencies relate the whole chunk and do not involve a sub-part of it. But in Sanskrit we come across instances of compounds termed as asamartha-samāsa (Joshi and Roodbergen), (Gillon 1993, asamartha) where the dependencies relate to the sub-part of a compound which need not necessarily be a head. Use of a chunker module before calling a parser would fail to parse such constructs. On the other hand, the Indian literature on verbal import was found to be useful from parsing point of view since it has discussions on various factors that are instrumental in the process of verbal cognition. We decided to use these factors in the development of our parser. Finally, the state-of-the-art parsers typically produce a single parse. We decided to produce all possible parses. This is to ensure that we do not miss out the correct parse. The onus of choosing the correct parse, from among the parses produced, is on the reader.

			Now we describe the basic algorithm for our parser. In the dependency structure described earlier, the nodes correspond to the words in a sentence, and the directed edges correspond to the semantic role of one word with respect to the other. The semantic roles are expressed through the morphemes. If a word is ambiguous between more than one morphological analyses, then different morphological analysis may suggest different roles. Therefore, while designing a parser, we represent each morphological analysis of a word by a node in a graph. Thus, corresponding to each word, there would be as many nodes as there are morphological analyses of it. To make the point clear, let us consider the sentence:

			rāmaḥ gacchati। 						(2)

			The word rāmaḥ has two possible analyses: one as a noun with a nominative case and the other as a verb rā in present tense, third person, singular. Similarly the word gacchati also has three possible analyses: one as a verb in present tense and the other two as the locative case of the present participial form gacchat in masculine and neuter gender. Now when we say rāmaḥ is related to gacchati by kartr̥ relation, it is the nominative analysis of rāma which is responsible for this relation and not the verbal analysis. Similarly, it is the verbal analysis of gacchati which, due to the expectancy of the underlying verb relates with the noun rāma.7 In order to capture these minute details, the nodes in our graph represent distinct morphological analyses of a word rather than the word itself. And a semantic role of one word8 with respect to another due to a speciﬁc morphological analysis is represented by a directed labelled edge between corresponding nodes. For example, the kartr̥ relation between rāma and gacchati is represented by a directed edge from gacchati to rāma and is labelled as kartr̥.

			Let us call this graph G. Then the problem of parsing a sentence may be modelled as the task of ﬁnding a sub-graph T of G such that G is a directed tree (or a Directed Acyclic Graph).

			The basic algorithm for parsing is given below and is explained in detail afterwards:

				1. Deﬁning the nodes. Deﬁne one node each corresponding to each morphological analysis for every word in a sentence.

				2. Establishing directed edges. Establish directed edges between the nodes, if there is either a mutual or unilateral expectancy (ākāṅkṣā) between the corresponding words and the word meanings are not mutually incongruous (yogyatā).

				3. Deﬁning the constraints. Deﬁne constraints, both local on each node as well as global on the graph as a whole. One of these constraints corresponds to sannidhi.

				4. Solving the constraints. Extract all possible trees from this graph that satisfy both local and global constraints. Produce all possible solutions to ensure that in case of sentences with multiple interpretations,9 machine does not miss any interpretation.

				5. Prioritizing the solutions. Produce the most probable solution as the ﬁrst solution by deﬁning an appropriate cost function. The cost C associated with a Solution Tree is deﬁned as

						C = ∑ e de * rk , where e is an edge from wj to wi with label k,

						 de =jj ¡ ij , rk is the rank10 of the role k.

			Now we explain the necessary resources for establishing the edges, followed by a list of various constraints. This is followed by three constraint-solving algorithms.

			4.2.1 Establishing directed edges

			In Chap. 3, we saw various sources that encode the information of expectancies. We also argued how the concept of absence of incongruity helps in pruning out non-sensical relations. In this section, now we describe the organization of various lexical resources as well as sample rules that are used for establishing the edges between the words (Panchal, forthcoming).

			Lexical Resources

			1. Each verb is associated with the following features:

			a. semantic category:11 {gati, buddhi, pratyavasānārtha, śabdakarma, ādikarma}

			b. transitivity: {akarmaka, sakarmaka, dvikarmaka of type 1,12 dvikarmaka of type 2}

				c.	expectancy for a karaṇa-kāraka: {True, False}

				d.	expectancy for a sampradāna-kāraka: {True, False}

				e.	expectancy for an apādāna-kāraka: {True, False}

				f.	expectancy for a kartr̥samānādhikaraṇa: {True, False}

				g.	expectancy for a karma-samānādhikaraṇa: {True, False}

				h.	expectancy for a vākyakarma:13 {True, False}

			2. Each noun in the dictionary is classiﬁed into one of the two categories {dravya, guṇa}. The relation-denoting terms under dravya and the guṇa-vacanas under the guṇa are further marked.

			3. All the words that expect an upapada vibhakti are marked with the following two features:

			a. vibhakti governed by an upapada: {2, 3, 4, 5, 6, 7}

			b. its relation with other words in a sentence: {adhikaraṇa, apādāna, viśeṣaṇa, etc.}

			4. Closed lists of auxiliary verbs14 and indeclinables such as negative particles and emphatic markers are provided.

			Grammatical Rules

			A directional edge d from a node A to node B is established provided the nodes A and B satisfy the necessary feature requirements. We denote such an edge as d : A ! B. We give below some sample rules for establishing such edges. These rules are developed following the Pāṇini’s grammar. In his Aṣṭādhyāyī, Pāṇini has stated rules that provide case markers for different kāraka and non-kāraka roles. We use these rules in the reverse direction, guessing a kāraka and a non-kāraka role from the case suffix. While the feature structure used is very elaborate, in the rules given below, we show only those features that are just sufﬁcient to explain the rule.

			1. Kārakas expressed by a verbal suffix (abhihita) are marked by the following rule:

			abhihita_kāraka:

			V (stem: r, voice: v, derivational_suffix: ds, Number: Nv , Person: Pv)

			!

					N (stem: n, gender: g, Number: Nn , Person: Pn , case: 1)

					provided, Nv = Nn and Pv = Pn. The name of an expressed kāraka (a kartr̥, a karman or a prayojaka kartr̥) is governed by the voice and the derivational suffix.

				2.	Rule for marking kārakas unexpressed by a verbal suffix (anabihita) is given below:

					Ki :

					V (stem: r, voice: v, derivational_suffix: ds, Number: Nv , Person: Pv)

					!

					N (stem: n, gender: g, Number: Nn , Person: Pn , case: ci)

					provided r has an expectancy for a kāraka ki , n denotes either a dravya or a guṇa-vacana and ci = vibhakti corresponding to ki , as per the Pāṇini’s rules.

				3.	Non-kāraka relations between a noun and a verb. Two relations hetu and prayojana15 are identiﬁed as below:

					ki : V (stem: r) ! N (stem: n, case: ci)

					provided ci = 4 for ki to be a prayojana and either 3 or 5 for ki to be a hetu.

					Similar conditions have been worked out for other non-kāraka relations such as kriyā-viśeṣaṇa and sambodhana.

				4.	Genitive relation. Two nodes with noun analysis, say, N1 (stem: n, case: 6) and N2 (stem: m) have a genitive relation from N1 to N2, provided, N2 is not a viśeṣaṇa. Some semantic relations that are used are part–whole relation (avayava–avayavī-bhāva) and is a kind of (sāmānya–viśeṣa/parā–aparā jāti) relation. Other resources that may be of use for exploring the possibility of using other semantic relations are the Sanskrit WordNet developed at IIT Bombay and the Knowledge Network of Amarakośa developed at the University of Hyderabad.

			The relations established as above, on the basis of ākāṅkṣā and yogyatā produce a directed graph. This graph represents all possible relations between the words.

			An Illustration

			For example, consider the following sentence:

			Skt: rāmaḥ vanam gacchati। 				(3)

			Gloss: Rāma {nom.} forest {acc.} go {pres. sg. 3rd person}

			Eng: Rāma goes to a forest.

			The analyses of the various words are numbered as [i, j], where i is the word index and j is the index of the morphological analysis of ith word.

			There are two possible analyses for the word rāmaḥ, viz.

			[1, 1]:	rāma {gender = m, case = 1, number = sg},

			[1, 2]: rā {gaṇaḥ = adādi, lakāra = laṭ, person = 1, number = pl, prayogaḥ = kartari, parasmaipadī}.

			The word vanam also has two possible analyses as below:

			[2, 1]: 	vana {gender = n, case = 1, number = sg},

			[2, 2]: 	vana {gender = n, case = 2, number = sg}.

			Gacchati has three possible analyses as below:

			[3, 1]: 	gam {lakāra = laṭ, person = 3, number = sg, voice = active, parasmaipadī},

			[3, 2]: gacchat (gam śatr̥) {gender = m, case = 7, number = sg},

			[3, 3]: gacchat (gam śatr̥) {gender = n, case = 7, number = sg}.

			In the absence of any grammatical information, the initial graph will be fully connected, with every node connected to every other node in the graph. With the condition that an edge between two nodes is established only if there is an expectancy and semantic compatibility, the number of edges reduce drastically. In the above example, with seven nodes, forty-two bidirectional edges are possible. Ākāṅkṣā and yogyatā reduce them to 10 as listed below:16

			[1, 1] is a possible kartr̥ of [1, 2]

			[1, 1] is a possible kartr̥ of [3, 1]

			[2, 1] is a possible kartr̥ of [1, 2]

			[2, 1] is a possible kartr̥ of [3, 1]

			[2, 2] is a possible karman of [1, 2]

			[2, 2] is a possible karman of [3, 1]

			[2, 2] is a possible karman of [3, 2]

			[2, 2] is a possible karman of [3, 3]

			[3, 2] is a possible adhikaraṇa of [1, 2]

			[3, 3] is a possible adhikaraṇa of [1, 2]

			The resulting graph is shown in fig. 4.5.

			4.2.2 Deﬁning the constraints

			We note that certain combinations of relations, in the above example, are not possible. For example, we cannot have vanam as a karman of rāmaḥ and rāmaḥ as a kartr̥ of gacchati simultaneously, since these two relations involve two different analyses of the same word rāmaḥ. Similarly, it is not possible to have vanam as a karman of both rāmaḥ and gacchati, because the am suffix in vanam can designate only one relation. Some of these constraints are local while some are global. These constraints are given below:

			
				
					[image:]
				

			

			1. Local Constraints:

			a. A morpheme corresponding to a suffix marks only one relation. That is, a node can have one and only one incoming edge. For example, in the above example, vanam cannot be the karman of two verbs.

			b. Each kāraka relation is marked by a single morpheme. There cannot be more than one outgoing edges with the same label from the same node, if the relation corresponds to a kāraka relation,17 i.e. there cannot be two words satisfying the same kāraka role of the same verb. For example, in the above example, kartr̥ of gacchati can be either rāmaḥ or vanam, but cannot be both.

			c. A morpheme does not mark a relation to itself. A word cannot satisfy its own expectancy, i.e. a word cannot be linked to itself. This means, there cannot be self loops in a graph.

			d. There can be only one valid analysis of every word per solution. Since a word has one node corresponding to each morphological analysis it has, there are further restrictions as below:

			i. If a word has both an incoming edge as well as an outgoing edge, it should be through the same node.

			ii. If there is more than one outgoing edge for a word, then all of them should be through the same node.

			iii. A viśeṣaṇa cannot have a viśeṣaṇa.18

					These conditions ensure that only one morphological analysis is chosen per word.

			2. Global Constraints:

			a. Sannidhi: There are no crossing of edges. If all the nodes are plotted in a straight line, then the edges connecting them when drawn on one side of the line should not intersect each other. There are, however, some cases of sannidhi violation, as described in Chap. 3, of relations involving adjectives and genitive case. If we assume the input to be in canonical form, then such cases would not arise.

			b. Certain relations always occur in pairs. For example, a kartr̥samānādhikaraṇa (a predicative adjective, literally having same locus as that of kartr̥) assumes that there is a relation of kartr̥ already established.

			4.3 Solving the Constraints

			In this section, we describe algorithms for extracting trees that satisfy the local and global constraints. Assuming that the words can be partitioned into two classes, viz. the words which have an expectancy called demand words and the words which satisfy the demand called source words, Bharati, Chaitanya and Sangal (1995: 96) reduced the parsing problem to matching a bipartite graph. But in reality, the words cannot be partitioned into two classes. We come across words which can be demand words in some context and source words in some other context, or in the same context a kr̥danta (primary derivative), for example, can be both a demand word as well as a source word. Thus these words need to be repeated in both the classes. Bharati, Chaitanya and Sangal (1995: 91) also needed the requirement of kārakas and their optionality (mandatory, desirable and optional) for each verb. But then, a parser based on such information will fail to parse sentences with ellipsis, or the sentences with incomplete information.

			With a robust parser, that produces at least partial solution in case of ellipsis, as an aim, we relax the above conditions. So we give away the constraint that a word can be exclusively either a demand or a source word. Further we treat all kārakas at the same level, irrespective of whether they are mandatory or optional, and assign penalty to lower the priority of those solutions which do not satisfy the mandatory expectancies.

			The graph-based and transition-based dependency parsing methods assume that there is only one node corresponding to each word. These methods also demand annotated data for initial training. Moreover, all these parsers produce only one parse. In our graphs, we have multiple nodes corresponding to each word. Not enough annotated corpus is available. We insist on all possible parses. And ﬁnally, there are certain local and global constraints the dependency parse should satisfy. Owing to all these considerations, we have developed three algorithms for solving the above-stated constraints. The ﬁrst algorithm was modelled as a constraint satisfaction problem (Kulkarni, Pokar and Shukl 2010). The next two algorithms are graph centric. The second algorithm was implemented as a node-centric traversal with Dynamic Programming (Kulkarni 2013). The third algorithm is implemented as an edge-centric traversal with binary join. Each of these algorithms is an improvement over the previous ones. We describe below each of them in detail.

			4.3.1 Constraint Satisfaction Problem

			A constraint satisfaction problem consists of a set of constraints over a set of decision variables. With each decision variable a domain of potential values is associated. In our case, with each edge of a graph is associated a potential binary value 0/1. And the local and global constraints provide the constraints over these edges. We represent the graph as a matrix, called a constraint matrix C. Thus the address of a typical element of this constraint matrix C is (i, j, R, k, l), where R is the relation from kth word due to its lth morphological analysis to ith word due to its jth analysis. Thus, the initial graph with all possible relations between various nodes is represented as a 5D matrix C such that C[i, j, R, k, l] = 1, if such a relation satisﬁes the expectancy and semantic compatibility,

			= 0, otherwise.

			Based on the available information in a given sentence in the form of ākāṅkṣā and yogyatā, the matrix C is populated with 0s and 1s.

			The local constraints described earlier are then translated as below:

			1. A morpheme corresponding to a suffix marks only one relation. That is there can be at the most only one incoming arrow for every node.

			2. Each word can have only one valid morphological analysis per interpretation. That is there can be at the most only one incoming arrow among all the nodes corresponding to a word. This condition is stronger than and includes the previous condition as well.

					I.e. a node can have one and only one incoming edge.

					∑ j, R, k, l C[i, j, R, k, l] = 1, 8 i .

			3. Each kāraka relation is marked by a single morpheme. There cannot be more than one outgoing edges with the same label from the same cell, if the relation marks a kāraka relation,19 i.e. there cannot be two morphological analyses satisfying the same kāraka role of the same verb.

					∑ i, j C[i, j, R, k, l] = 1, for each tuple (R, k, l), where R is a kāraka relation.

			4. A morpheme does not mark a relation to itself. A word cannot satisfy its own expectancy, i.e. a word cannot be linked to itself or there cannot be self loops in a graph.

					∑ j, R, k C[i, j, R, i, k] = 0, 8 i .

			5. Only one valid analysis of every word per solution:

			a.	If there are both an incoming edge as well as an outgoing edge corresponding to the nodes of a word, they should be through the same node. In other words, if a node has an incoming (outgoing) edge then no other node corresponding to that word can have an outgoing (incoming) edge.

					∑ R, l, n C[i, j, R, l, n] + ∑ a, b, R, k 6= j C[a, b, R, i, k] ∙ 1, 8 i , j.

			b. If there are more than one outgoing edge through the nodes of a word, then they should be through the same node.

			if, 9 i, j, R, l, m such that C[i, j, R, l, m] = 1,

			then ∑ a, b, R, k 6= m C[a, b, R, l, k] = 0.

				6.	All the words in a sentence should be connected. Each word should have at least one node with an incoming or an outgoing edge.

					∑ a, b, R(C[a, b, R, i, j] + C[i, j, R, a, b]) ¸ 1, 8 i, j

				7.	There are no crossing of links. If all the nodes are plotted in a straight line, then they should not intersect each other, i.e.,

					if 9 i, j, R, k, l such that C[i, j, R, k, l] = 1, then

					 x, u such that

					i < x < k and u < i or u > k, or

					i < u < k and x < i or x > k,

					∑ v, x, w C[u, v, w, x, y] = 0,

				8.	There should be exactly n ¡ 1 edges.

					∑ a, b, R, i, j C[a, b, R, i, j] = n ¡ 1.

			To solve these constraints, we used off-the-shelf general purpose fast, scalable, constraint solver MINION.20 MINION provides all possible solutions. We ranked these solutions using the cost C deﬁned earlier.

			The main disadvantage of this approach is the space complexity. The size of the 5D matrix is N * M * K * N * M , where N is the total number of words in the sentence, M is the maximum number of morph analyses for a word in the given sentence and K is the maximum number of distinct possible relations among the words in a given sentence. Sanskrit words being overloaded with morphological analysis, frequently occurring words tend to have several analyses possible.21 Such words in a sentence determine the size of the matrix. As the number of words in a sentence increases or if a sentence has even a single word with considerable number of morph analyses, the size of the 5D matrix explodes. For example, with approximately ten words in a sentence, assuming maximum number of analyses per word as 15, and maximum possible relations as 35, the total entries in the matrix is almost a million. Most of these cell entries being zero, we get a sparse matrix. And the constraint solver has to choose only n ¡ 1 entries with value 1 from this matrix satisfying the constraints stated above. Thus we observe that this representation consumes too much space and the use of the parser for parsing long sentences from literary texts becomes unfeasible.

			The second disadvantage of this method is that the constraints are applied globally to the matrix. However, we notice that some of the constraints are local to a node. Separating the local constraints from the global and applying the local constraints at an early stage to rule out non-solutions should improve the efficiency of the system. This led us to redesign the parser.

			Instead of viewing the problem as a constraint speciﬁcation problem, we model it as extracting a directed tree from a labelled graph. The problem then is similar to getting a spanning tree of a graph. However, the problem also substantially differs from that of a spanning tree. First, the edges in the graph are both directional and labelled. Thus between any two nodes of a graph, there may be more than one edge. Second, our graph has as many nodes as there are total morphological analyses of all the words put together, and the tree has only as many nodes as there are words in a sentence. Thus in this sense, the extracted tree does not correspond to a spanning tree, since the number of nodes in the tree is not the same as those in the graph. Finally, this tree also should satisfy various constraints – both local applied to a node as well as global. We are also interested in all possible solutions, instead of just the optimal one. This led us to develop our own algorithms instead of trying existing algorithms. We present below two algorithms: the ﬁrst one is a vertex-centric traversal and the second one is an edge-centric binary join.

			4.3.2 Vertex-centric Traversal

			We now describe a deterministic parsing algorithm that applies the local constraints locally and also uses dynamic programming for efficient parsing. In the dynamic programming we share the intermediate results in a computation avoiding the recomputation of sub-problems solved earlier. Thus we solve each sub-problem only once and share its results as and when required later.22

			Let G1 = (N1, E1) be a graph, where N1 is the set of nodes corresponding to the morphological analyses of the words in a given sentence and E1 is the set of triplets (i, j, r) representing directed weighted arcs from jth node to the ith node with a label r. With every relation r a weight w is associated, which reﬂects its preference over other relations. The total number of nodes equals ∑i mi, where mi is the number of possible morphological analyses of the ith word.

			Let S and F be two special nodes denoting the START node and the FINAL node. We deﬁne the adjacency graph G2 = (N2 , E2), where N2 = N1 [{S, F} and E2 is the set of directed edges (i, j) such that i and j correspond to the morphological analyses of adjacent words wk and wk + 1. The direction of the edge is from j to i . S is adjacent to the nodes corresponding to the morphological analyses of the ﬁrst word of the sentence and F is adjacent to the nodes corresponding to the morphological analyses of the last word of the sentence.

			A “path” P of a graph G2 is a sequence of edges which connects the nodes from S to F. For example, S-1-3-5-F is the leftmost path in fig. 4.7.

			An edge (i1, j1, r1) is “locally incompatible” with a set of edges E1 , where E1 = {(i, j, r)j(i, j, r) 2 E of G1}, under the following conditions:

			1. The edge is a self loop. That is, i1 = j1.

			2. E1 contains an outgoing edge from the node j1 with label r1 to some node other than i1. This means two different words satisfy the same expectancy of a word.

			9 i 6 = i1 (i, j1, r1) 2 E1.

			3. E1 contains an incoming edge to i1 which has a different label than r1 or which originates from a node other than j1. This means a word satisﬁes more than one expectancy.

			9 j 6 = j1 (i1, j, r1) 2 E1 , or

			9 r 6 = r1 (i1, j1, r) 2 E1 , or

			9 j 6 = j1 , r 6 = r1 (i1, j, r) 2 E1.

			A set of edges E1 = {(i, j, r)j(i, j, r) 2 E of G1} is said to be “locally compatible”, if no edge (i1, j1, r1) 2 E1 is locally incompatible with the rest of the edges in E1.

			A set of labelled edges E1 = {(i, j, r)j(i, j, r) 2 E of G1} is “globally compatible” provided the following conditions are satisﬁed:

			1. The sub-graph of G1 with edges from E1 is projective. In other words, if the nodes corresponding to the edges in E1 are arranged in an increasing order of their index, then the edges do not cross.

			2. For certain relations r such as kartr̥samānādhikaraṇa (predicative adjective) there is a matching relation kartr̥ (agent).

			3. The edges in E1 do not form a loop.

			A sub-graph T of G1 is a “parse” if

			1. The nodes in T correspond to some path of G2. This ensures that each node in T corresponds to a distinct word and every word in the sentence is accounted for.

			2. T is a Tree. This ensures that every word in a sentence is related directly to one and only one other word.

			3. The set of edges in T are both locally as well as globally compatible.

			Parsing Algorithm

			1. Starting with node S, every path of G2 is traversed following the Depth-First-Traversal (DFT). Two stacks are maintained. One stack called Path-Stack P keeps track of the path visited so far and the other stack called Tree-Stack T maintains the list of all possible sets of locally compatible edges on the path visited so far. This list thus provides the current status of the partial solution(s) at any point of time.

			2. At each node on a given path, a list of all incoming edges to this node is obtained from G1. For each of these edges:

			a. If it is locally compatible with any of the partial solutions in T , the edge is added to the partial solution and the node is pushed on to P .

			b. If the edge is incompatible with all partial solutions so far, this path is abandoned.

			3. When the ﬁnal node F is reached, each solution in T is checked for the global compatibility. Each globally compatible set of edges, which is a subset of edges in G1, forms a Tree and hence is a possible solution.

			4. For each such possible solution, cost is computed using the formula Cost = ∑ w * jj ¡ ij, where w is the weight associated with the relation label of the edge between the nodes corresponding the jth and ith words.

			DFT of the graph G2 from S to F is equivalent to traversing the sentence from left to right for various combinations of morphological analyses. The parser is deterministic and it is guaranteed to terminate after ∏i mi paths are traversed, where mi is the number of morphological analyses of the ith word. At each node of G2 , the number of compatibility checks is equal to the number of incoming edges for that node in graph G1 multiplied by the partial solutions construed so far. Total compatibility checks equals ∑j ∏i rij , where rij stands for the number of incoming edges on the ith node of the jth path. The total number of paths, as noted above, is ∏i mi. Stacking of intermediate partial solutions ensures the dynamic programming.

			An Example

			We illustrate this algorithm with an example. Consider the sentence (3), and all possible relations in it, which we saw earlier. For easy accessibility, we repeat the information below:

			Skt: rāmaḥ vanam gacchati।					(3)

			Gloss: Rāma forest {acc.} goes.

			Eng: Rāma goes to the forest.

			In this sentence, each of the two words rāmaḥ (Rāma) and vanam (forest) has two possible analyses, while the word gacchati (goes) has three possible analyses as shown below:

				1. rāmaḥ = rāma {masc.} {sg.} {nom.}

				2. rāmaḥ = rā {pr.} {1p} {pl.}

				3. vanam = vana {neu.} {sg.} {nom.}

				4. vanam = vana {neu.} {sg.} {acc.}

				5. gacchati = gam {pr.} {3p.} {sg.}

				6. gacchati = gam {pr. part.} {masc.} {sg.} {loc.}

				7. gacchati = gam {pr. part.} {neu.} {sg.} {loc.}

			Thus, G1 has seven nodes (see fig. 4.6, which is the same as fig. 4.5, redrawn with node numbers). These nodes are numbered sequentially as shown above. Edges marking the relations are listed in Table 4.1. The relations compatible with each relation are also shown in this table. The information of adjacency is shown in Table 4.2 and as a graph G2 in fig. 4.7. Note that we have not assumed the input to be in canonical order.

			
				
					[image:]
				

			

			We now illustrate the stages in computation. The process starts with a visit to the START node S of G2. Then its ﬁrst left-most child, viz. node 1 is visited. Among all the incoming edges of node 1 of graph G1, only those edges that are locally compatible are selected. There are two incoming edges, viz. a and b. Of these, a does not satisfy the local compatibility. This leaves us with only one incoming edge b. It forms the initial partial solution. This solution is pushed onto the T and the depth ﬁrst traversal of G2 is continued. Next node 3 of G2 is visited. Here there are two incoming edges, viz. c and d. The compatibility check of these edges with the earlier partial solution on T shows that both these edges are incompatible with the earlier partial solution. Hence the further traversal of this path is stopped. The traversal is continued with node 4, the sibling of node 3. There are four incoming edges e, f, g and h with node 4. Of these, only f is compatible with b. So f is added to the partial solution b. The traversal is continued further with a visit to node 5. There are no incoming edges. Next node is the ﬁnial node F, marking the completion of the path with a Solution Tree f, b. This solution is accepted. The traversal is continued till all the paths are traversed. Table 4.3 shows the complete summary of various paths traversed and the partial solutions formed at each stage. The “accept” state corresponds to the complete paths with compatible solutions.

			
				
					
						
						
						
						
						
					
					
						
								
								Table 4.1: All Possible Relations with Their Compatible Relations

							
						

						
								
								Relation

								id

							
								
								From

								Node (j)

							
								
								To

								Node (i)

							
								
								Relation

								Name (r)

							
								
								Compatible

								Relations

							
						

						
								
								a

							
								
								2

							
								
								1

							
								
								kartr̥

							
								
								–

							
						

						
								
								b

							
								
								5

							
								
								1

							
								
								kartr̥

							
								
								f

							
						

						
								
								c

							
								
								2

							
								
								3

							
								
								kartr̥

							
								
								i, j

							
						

						
								
								d

							
								
								5

							
								
								3

							
								
								kartr̥

							
								
								–

							
						

						
								
								e

							
								
								2

							
								
								4

							
								
								karman

							
								
								i, j

							
						

						
								
								f

							
								
								5

							
								
								4

							
								
								karman

							
								
								b

							
						

						
								
								g

							
								
								6

							
								
								4

							
								
								karman

							
								
								i

							
						

						
								
								h

							
								
								7

							
								
								4

							
								
								karman

							
								
								j

							
						

						
								
								i

							
								
								2

							
								
								6

							
								
								adhikaraṇa

							
								
								c, e, g

							
						

						
								
								j

							
								
								2

							
								
								7

							
								
								adhikaraṇa

							
								
								c, e, h

							
						

					
				

			

			Thus there are seven solutions possible, corresponding to the accept states shown in fig. 4.8. Of these seven solutions, except the ﬁrst one, all other solutions involve the kr̥danta analysis of the verb gam, with present participle suffix śatr̥ in the locative case. Now there is a global requirement for this suffix that there should be at least one another noun in the locative case which can act as a kartr̥ of this verb. And in the above example, in each of the solutions involving the locative case marker analysis of gam in śatr̥ suffix, another noun in locative case suffix is missing. Hence these solutions do not satisfy the global compatibility, and therefore these are ﬁltered out, leaving only the ﬁrst solution.

			
				
					
						
						
						
					
					
						
								
								Table 4.2: Adjacency

							
						

						
								
								Node No.

							
								
								Left Word Nodes

							
								
								Right Word Nodes

							
						

						
								
								1

							
								
								S

							
								
								3, 4

							
						

						
								
								2

							
								
								S

							
								
								3, 4

							
						

						
								
								3

							
								
								1, 2

							
								
								5, 6, 7

							
						

						
								
								4

							
								
								1, 2

							
								
								5, 6, 7

							
						

						
								
								5

							
								
								3, 4

							
								
								F

							
						

						
								
								6

							
								
								3, 4

							
								
								F

							
						

						
								
								7

							
								
								3, 4

							
								
								F

							
						

					
				

			

			
				
					[image:]
				

			

			The advantages of this method over the previous method are:

				1. It is deterministic.

				2. Dynamic programming ensures reduction in processing time when there are overlapping transitions.

				3.	In addition to the dependency tree, the left–right traversal also produces the trace of the path depicting the word order.

			
				
					
						
						
						
					
					
						
								
								Table 4.3: An Illustration of Various Paths Traversed and Partial Solutions

							
						

						
								
								Path-Stack

							
								
								Tree-Stack

							
								
								Action

							
						

						
								
								S

							
								
								–

							
								
						

						
								
								S-1

							
								
								b

							
								
						

						
								
								S-1-3

							
								
								–

							
								
								Abandon

							
						

						
								
								S-1

							
								
								b

							
								
						

						
								
								S-1-4

							
								
								b, f

							
								
						

						
								
								S-1-4-5

							
								
								b, f

							
								
						

						
								
								S-1-4-5-F

							
								
								b, f

							
								
								Accept

							
						

						
								
								S-1-4-6

							
								
								–

							
								
								Abandon

							
						

						
								
								S-1-4-7

							
								
								–

							
								
								Abandon

							
						

						
								
								S-2

							
								
								–

							
								
						

						
								
								S-2-3

							
								
								c|d

							
								
						

						
								
								S-2-3-5

							
								
								c|d

							
								
						

						
								
								S-2-3-5-F

							
								
								c|d

							
								
								Reject

							
						

						
								
								S-2-3-6

							
								
								c, i|d

							
								
						

						
								
								S-2-3-6-F

							
								
								c, i|d

							
								
						

						
								
								S-2-3-6-F

							
								
								c, i

							
								
								Accept

							
						

						
								
								S-2-3-6-F

							
								
								d

							
								
								Reject

							
						

						
								
								S-2-3

							
								
								c|d

							
								
						

						
								
								S-2-3-7

							
								
								c, j|d

							
								
						

						
								
								S-2-3-7-F

							
								
								c, j|d

							
								
						

						
								
								S-2-3-7-F

							
								
								c, j

							
								
								Accept

							
						

						
								
								S-2-3-7-F

							
								
								d

							
								
								Reject

							
						

						
								
								S-2-4

							
								
								e|f|g|h

							
								
						

						
								
								S-2-4-5

							
								
								e|f|g|h

							
								
						

						
								
								S-2-4-5-F

							
								
								e|f|g|h

							
								
								Reject

							
						

						
								
								S-2-4

							
								
								e|f|g|h

							
								
						

						
								
								S-2-4-6

							
								
								e, i|g, i

							
								
						

						
								
								S-2-4-6-F

							
								
								e, i|g, i

							
								
								Accept

							
						

						
								
								S-2-4

							
								
								e|f|g|h

							
								
						

						
								
								S-2-4-7

							
								
								e, j|h, j

							
								
						

						
								
								S-2-4-7-F

							
								
								e, j|h, j

							
								
								Accept

							
						

					
				

			

			The major disadvantage of this method is, being node-centric traversal, if the initial words have several incoming arrows, then the partial solutions in the beginning are many and as we traverse various paths, the possibilities grow exponentially. We also check the compatibility of each new edge with all the edges on the path explored so far. This leads to some redundancy, because if a node falls on more than one path, it would be visited more than once, and during each such visit all the incoming edges are checked for compatibility with all other edges on the path traversed so far. In the worst case scenario, the incompatibility between the nodes would be noticed only at the ﬁnal node.

			
				
					[image:]
				

			

			We discuss the modiﬁed version of this algorithm in the next section which avoids the redundancy in compatibility checking, and also removes some of the incompatible edges at the start of the algorithm.

			4.3.3 Edge-centric Binary Join

			We modify the previous algorithm at three levels:

				1. Any edge that is a part of the solution should be compatible with remaining n ¡ 2 edges in the solution Tree, where n is the number of words in the sentence. Hence, we throw away all those edges that are not compatible with at least n ¡ 2 other edges.

				2. We deﬁne the compatibility of two sets of edges as a simple operation of set intersection.

				3. We build the solutions recursively starting with the individual words bottom-up, each time joining two sets of compatible edges. In n ¡ 1 joins we get all possible DAGs, where n is the number of words in a sentence. Join operation is deﬁned as a set union.

			This algorithm is edge-centric. Before giving the detailed algorithm, we deﬁne a few terms:

			Compatible Edge: An edge e1 is said to be “compatible” with another edge e2 iff they are locally compatible and we set Compatible (e1, e2) = 1.

			Compatible Set of Edges: Let R be a set with edges {r1, r2,…, rn}. And let C be a set with edges { c1, c2, …, cm}. C is “compatible” with R iff 8 i 8 j Compatible (ci , rj) = 1.

			Joinable Sets: Let R1 and R2 be two sets of edges. Let C1 and C2 be the sets of edges that are compatible, respectively, with R1 and R2. R1 and R2 are “joinable” provided R1 µ C2 and R2 µ C1. For such joinable sets, the edges compatible with R1 [R2 are equal to (C1 \ C2) − (R1 [R2).

			Now we give the detailed algorithm:

				1. Let there be N edges.

				2. For each edge list down all other edges it is locally compatible with.

				3. Construct all possible DAGs, by calling Construct Dags 0N, where ConstructDags is deﬁned as

					ConstructDags initial ﬁnal =

						if (ﬁnal − initial > 0)

						then

						dags = RemoveSmallDags size (JoinDags dag1 dag2)

						where

						size = ﬁnal − initial − 1

						dag1 = ConstructDags init mid, and

						dag2 = ConstructDags (mid + 1) ﬁnal,

						where mid = (initial + ﬁnal)/2

					else

						dags = GetInitialDags init,

				(which returns as many initial DAGs as there are incoming arrows at the node with index initial. Each such initial DAG contains a single incoming arrow.)

				RemoveSmallDags N dags

				(removes all the DAGs from dags that have less than N edges).

				JoinDags D1 D2

				(joins two dags D1 and D2, if they are joinable sets, and for the combined dag D, computes the edges compatible with D.)

				4. Remove all those solutions that do not satisfy the global compatibility condition.

				5. Each possible solution is then checked for global compatibility. Only those solutions that satisfy the global compatibility condition are retained.

				6. For each globally compatible solution, compute the

					Cost = ∑ w * jj ¡ ij, where w is the weight of the relation from jth word to ith word and prioritize the solutions on this Cost.

			An Example

			We illustrate the algorithm with the sentence (3) discussed earlier. For easy accessibility, we repeat the information below.

			Skt: rāmaḥ vanam gacchati।					(3)

			Gloss: Rāma forest {acc.} goes.

			Eng: Rāma goes to the forest.

			In this sentence, as we have seen earlier, each of the two words rāmaḥ (Rāma) and vanam (forest) has two possible analyses, and the word gacchati (goes) has three possible analyses as shown below.

				1.	rāmaḥ = rāma {masc.} {sg.} {nom.}

				2.	rāmaḥ = rā {pr.} {1p} {pl.}

				3.	vanam = vana {neu.} {sg.} {nom.}

				4.	vanam = vana {neu.} {sg.} {acc.}

				5.	gacchati = gam {pr.} {3p.} {sg.}

				6.	gacchati = gam {pr. part.} {masc.} {sg.} {loc.}

				7.	gacchati = gam {pr. part.} {neu.} {sg.} {loc.}

			
				
					
						
						
						
						
						
					
					
						
								
								Table 4.4: All Possible Edges and Their Compatible Edges

							
						

						
								
								Edge id

							
								
								From (j)

							
								
								To (i)

							
								
								Relation

								Name (r)

							
								
								Compatible

								Edges

							
						

						
								
								a

							
								
								2

							
								
								1

							
								
								kartr̥

							
								
								–

							
						

						
								
								b

							
								
								5

							
								
								1

							
								
								kartr̥

							
								
								f

							
						

						
								
								c

							
								
								2

							
								
								3

							
								
								kartr̥

							
								
								i,j

							
						

						
								
								d

							
								
								5

							
								
								3

							
								
								kartr̥

							
								
								–

							
						

						
								
								e

							
								
								2

							
								
								4

							
								
								karman

							
								
								i,j

							
						

						
								
								f

							
								
								5

							
								
								4

							
								
								karman

							
								
								b

							
						

						
								
								g

							
								
								6

							
								
								4

							
								
								karman

							
								
								d,i

							
						

						
								
								h

							
								
								7

							
								
								4

							
								
								karman

							
								
								e,j

							
						

						
								
								i

							
								
								2

							
								
								6

							
								
								adhikaraṇa

							
								
								c,e,g

							
						

						
								
								j

							
								
								2

							
								
								7

							
								
								adhikaraṇa

							
								
								c,e,h

							
						

					
				

			

			All possible relations are shown in Table 4.4. First we ﬁlter out the edge a, since it maps the relation between two analyses of the same word, thereby violating local compatibility. Similarly, we ﬁlter out edge d, since it is not compatible with any of other edges. We retain all other edges as they are compatible with at least 1 (= n ¡ 2) other edge. Next we start building the solutions recursively. We start with the incoming edges of the ﬁrst word. There is only one incoming edge, marked as b. This forms our ﬁrst set of edges R1. The set of compatible edges with R1, denoted by C1 has only one edge f. For the second word there are ﬁve incoming edges, marked as c, e, f, g and h. Each of these starts a new partial solution. We call them R2, R3, R4, R5 and R6. For each of these edges, the compatible edges are shown in Table 4.4. We call them C2, C3, C4, C5 and C6, respectively. Now we check which of these partial solutions is joinable with R1. We notice that only R4 is joinable with R1. Joining these two partial solution sets results in {b, f}. The set of edges compatible with this partial solution is given by (C1 \ C4) − (R1 \ R4) = Á. We carry earlier partial solutions, viz. R2, R3, R4, R5 and R6 as well, being potential partial solutions, since each of them has one edge, and we still have one more word to visit. Now we get the edges of the third word and join them with the current partial solutions. Corresponding to the third word, we have i and j as two incoming edges. Checking compatibility with all the partial solutions in the previous stage, we get seven possible solutions as shown in fig. 4.8.

			
				
					
						
						
					
					
						
								
								Table 4.5: Trace of Algorithm on Sentence 3

							
						

						
								
								Instructions

							
								
								Result

							
						

						
								
								ConstructDags 0 2

							
								
								12. {b,f | c,i | c,j | e,i | e,j |g,i| h,j}

							
						

						
								
								ConstructDags 0 1

							
								
								7. {b , f | b | c | e | f | g | h}

							
						

						
								
								 ConstructDags 0 0

							
								
								2. {b}

							
						

						
								
								 GetInitDags 0

							
								
								1. {b}

							
						

						
								
								 ConstructDags 1 1

							
								
								4. {c | e | f | g | h}

							
						

						
								
								 GetInitDags 1

							
								
								3. {c | e | f | g | h}

							
						

						
								
								 JoinDags {b}, { c | e | f | g | h}

							
								
								5. {b, f | b | c | e | f | g | h}

							
						

						
								
								 RemoveSmallDags

							
								
								6. {b, f | b | c | e | f | g | h}

							
						

						
								
								 ConstructDags 2 2

							
								
								9. {i | j}

							
						

						
								
								 GetInitDags 2

							
								
								8. {i | j}

							
						

						
								
								 JoinDags {b, f | b | c | e | f | g | h}, {i | j}

							
								
								10. {b, f | c, i | e, i | g, i | c, j |e,j | h,j|b | c | e| f | g | h | i | j }

							
						

						
								
								 RemoveSmallDags

							
								
								11. {b, f | c, i | c, j | e, i | e, j |g,i | h,j}

							
						

						
								
								 GlobalCompatibilityCheck

							
								
								13. {b, f}

							
						

					
				

			

			In Table 4.5, we show the invocation of the algorithm for this sentence. The result shows the step number followed by the list of possible relations at that step. In this trace, we have not shown the compatible edges at each stage for each partial dag.

			Finally, as in the previous case, we check all these solutions for global compatibility. In this example only {b,f} satisﬁes the global compatibility. And thus we get a unique solution. This corresponds to the top-left tree in fig. 4.8. If there are more than one globally compatible solutions, we rank them with the same cost function deﬁned earlier.

			In this algorithm, JoinDags is called n ¡ 1 times. If there are ri incoming edges for ith word, then in the worst case, there are ∏i ri set union and set intersection operations.

			4.4 Compact Display of Multiple Solutions

			Sanskrit being a classical language demands certain special features with respect to its computational tools. Being an old classical language, most of the important texts in Sanskrit have been translated manually into several modern languages. So naturally, machine translation takes a back seat for Sanskrit. What a user needs is an access to the original text with the help of various online linguistic tools and resources so that he can himself interpret and understand the texts in original. From this aspect, displaying only the ﬁrst parse does not serve the purpose. User might like to go through various possibilities and choose his own interpretation. It is also possible that the text is ambiguous with two or more readings, and user would like to go through each of them. Displaying all the parse trees would not serve any purpose, since the trees look almost similar with either a change in one or two branches, or with a change in the label.

			In what follows we present a compact way of presenting all the solutions. This was inspired by the slim interface of Heritage segmenter Huet and Goyal (2016).

			Let Ti = (Ni , Ei), where i = 1 to n be n parses of a given sentence. Let N = [Ni and E = [Ei. The display consists of three rows. The top row lists the words with their positions. The second row consists of morphological analyses corresponding to all the nodes in N. Analyses are written in n columns corresponding to each word. The third row consists of incoming edges into the corresponding word/node.

			The user can now choose either a node from the second row or an edge from the third row. Each choice calls the compatibility checker to remove the incompatible nodes and edges corresponding to the user’s choice. Each choice results in the reduction of possible parses. At any point in time, a user can choose to display the graphs of current possible parses.

			Here is an illustration of the interface. The input sentence is an anvaya of śloka IV.8 from the Bhagavadgītā. The original śloka is

			paritrāṇāya sādhūnāṁ vināśāya ca duṣkr̥tām।

			dharma-saṁsthāpanārthāya sambhavāmi yuge yuge।।

			The anvaya, an input to the parser, is: sādhūnām paritrāṇāya duṣkr̥tām vināśāya dharma-saṁsthāpanāya23 ca yuge yuge sambhavāmi।

			Figure 4.9 shows the summary of parses as a compact display.24 The union of relations from all parses for each word is shown. User can choose either the correct morphological analysis or correct relation corresponding to the node. When he chooses the correct morphological analysis, all the relations in the relations row that are incompatible with this choice are removed from the display. Similarly, if a user chooses a relation in the relation row, all the relations that are incompatible with this relation, and all the morphological analyses that are incompatible with this choice of a relation are removed from the display. Thus, for example, the word sādhūnām has two morphological analyses in fig. 4.9. But, after selecting the appropriate analysis, in fig. 4.10, we notice that the relations under this word are also reduced. All those relations which have sādhūnām as one of the relata are removed from the display. Similarly, selecting the role of this word as karman, 2, 2 (karman of the second analysis of the second word), not only removes all other relations below this word, but also removes the ﬁrst morph analysis of the second word, and all the relations having this analysis as one of the relata. The result of this is shown in fig. 4.11. Finally when we make all the choices, a unique parse is obtained (see fig. 4.12). Clicking on the check sign of unique parse, we get the rendering of the relations in the form of a dependency graph (see fig. 4.13).

			The parse of a sentence with n words has n ¡ 1 edges corresponding to the relations. Hence one can choose the correct parse from this compact display in maximum n ¡ 1 choices. This interface thus can also be used for developing a tree bank for Sanskrit semi-automatically. Due to the limitations on space, we do not give the technical details of this interface here.

			4.5 Conclusion

			The main purpose behind the development of indigenous parsers was to evaluate the usefulness of theories of śābdabodha for the mechanical parsing of Sanskrit sentences. The theories of śābdabodha discuss in minute detail the ﬂow of information, various means of encoding the information, the amount of information encoded and so on. These theories were further supported by providing various conditions such as ākāṅkṣā, yogyatā and sannidhi that help in the process of verbal cognition. So we decided to model these conditions computationally. The modelling of ākāṅkṣā provided us a ﬁlter for pruning out impossible edges. Sannidhi turned out to be a weak non-projectivity. Modelling yogyatā was the most difficult task, since it involved a huge lexicon and compatibility between various lexical items. But various deﬁnitions of yogyatā provided us clue to model it in terms of absence of non-congruity in order to increase the recall. The use of yogyatā further ﬁltered out a few more edges in the graph.

			From the theories of śābdabodha, we could also conclude that the tree-data structure is the best for representing the dependency parse. Thus, the task of parsing was to extract a tree from the graph that satisﬁes some local and global constraints. We discussed here three algorithms, each one an improvement over the other. The ﬁrst one was modelled as a constraint solver. We observed that the constraints are of two types: local and global. Applying the local constraints earlier would reduce the complexity of the problem. Hence next we modelled the problem as extracting a directed tree from a labelled graph. The ﬁrst algorithm followed the vertex-centric traversal and the second one an edge-centric traversal. Both the algorithms used the dynamic programming for efficiency. The edge-centric algorithm is more efficient than the node-centric, since in the edge-centric algorithm, the incompatibility between the edges is noticed at an early stage. All these parsers assume the input to be in a canonical word order, and unsegmented. However, from the user’s perspective, it is undesirable to impose such restriction. An interface between the Heritage Sanskrit Reader and this parser algorithm is developed that allows a user to input even an unsegmented verse. The user interfaces allow the user to select the best-suited segmentation and provide the canonical word order of such segmented text.

			The algorithms described above are tested on Sanskrit. However, all these algorithms are general one and should work well for the modern Indian languages as well.

			
				
					[image:]
				

			

			
				
					[image:]
				

			

			
				
					[image:]
				

			

			
				
					[image:]
				

			

			
				
					[image:]
				

			

			

			
				
					1		http://sanskrit.inria.fr

				

				
					2		arthaikatvāt ekam vākyam। sākāṅkṣam cet vibhāge syāt ।। – Mīmāṁsāsūtra 2.1.46

				

				
					3		suptiṅantam padam – A 1.4.14.

				

				
					4		Here we deal with only the nominal (sup) and verbal suffixes (tiṅ), and the derivational suffixes that produce indeclinables. The derivational suffixes producing new nominal and verbal stems mark the word internal structure. We do not show the word internal structure in the dependency parse. We need the word internal structure of compounds, though. However, in the present discussion, we do not deal with the internal structure of compounds.

				

				
					5		With an exception of the nominative case marker which does not mark any role.

				

				
					6		We assume that every sentence has at least one main verb. In case a sentence does not have a verb, as in the case of aśvaḥ śvetaḥ (the horse {is} white), we demand that the sentence be presented as aśvaḥ śvetaḥ asti (the horse is white) with an appropriate copula such as asti.

				

				
					7		To be precise, the expectancy of the verb for a kartr̥ is expressed by the verbal suffix itself. The relation of samānādhikaraṇa between the kartr̥ of the verb expressed by the verbal suffix and the word rāmaḥ in nominative form is further marked by the agreement between the two in number and person.

				

				
					8		By word we mean the denotation of a word.

				

				
					9		As in the case of texts involving pun or multiple meanings (śleṣa).

				

				
					10		All the roles are ranked, on the basis of heuristics, starting from 1.

				

				
					11		This category has the basis of Pāṇini’s sūtras that assign different vibhaktis to different classes of verbs when new verbs are derived with derivational suffixes such as ṇic.

				

				
					12		This classiﬁcation is based on the behaviour of mukhya and gauṇa karman in the causative constructions.

				

				
					13		Vākya-karma is a karma in the form of a sentence.

				

				
					14		śaka-dhr̥śa-jñā-glā-ghaṭa-rabha-labha-krama-saha-arha-asti-artheṣu – A 3.4.65

				

				
					15		Tādarthya has been marked as a prayojana. Since it is out of the scope of this monograph, we do not provide the arguments here.

				

				
					16		For the purpose of illustration, we do not assume the input to be in canonical form. If we assume the input to be in canonical form, some of the relations shown above would not be possible.

				

				
					17		Adhikaraṇa is treated as an exception since one can have more than one adhikaraṇa as in

					Skt: rāmaḥ adya pañca vādane gr̥ham agacchat।

					Eng: Today Rāma came home at ﬁve o’clock.

				

				
					18		guṇānām ca parārthatvāt asambandhaḥ samatvāt syāt। – Mīmāṁsāsūtra 3.1.22

				

				
					19		With an exception of adhikaraṇa kāraka.

				

				
					20		http://minion.sourceforge.net

				

				
					21		The word te has sixteen possible inﬂectional analyses. If we take into account the derivational information, the possibilities explode further.

				

				
					22		The best example of dynamic programming is to get the nth Fibonacci number, F (n), which is deﬁned as sum of F (n ¡ 1) + F (n ¡ 2). Since F (n ¡ 2) is needed again to calculate F (n ¡ 1), it is “memorized” and used again when needed later. Thus each sub-problem, viz. of calculating F (k), for k ranging from n to 1, is solved only once.

				

				
					23		The original word is dharma-saṁsthāpanārthāya, which we changed to dharma-saṁsthāpanāya, since the former was still not recognized by the morphological analyser.

				

				
					24		The display shows only ﬁrst ﬁve columns.

				

			

		

	
		
			5

			Conclusion

			Pāṇini’s grammar has two aspects: one is the prakriyā-pakṣa – an aspect that deals with the derivation process of word forms from their stems and the second one the ārthī-pakṣa – an aspect that deals with the concepts needed for language analysis. This second part mainly deals with the bridge connecting the syntax to the semantics. This aspect was pursued further by Patañjali, Bhartr̥hari, Kauṇḍa Bhaṭṭa and Nāgeśa Bhaṭṭa who have written pioneering works on this branch of Sanskrit grammar. The Naiyāyikas and the Mīmāṁsakas used the concepts described in Pāṇini and developed theories further from the listener’s point of view. These theories then led to the theories of śābdabodha, which discuss the complete process of verbal understanding describing the sources of information encoding, what kind of information is encoded, the manner in which such information is encoded, the conditions under which such an information encoding can lead to a proper verbal understanding and constraints on word order such as weak non-projectivity, and so on.

			Indian theories also discuss various levels of meaning a word conveys and how the sentential meaning is arrived at from all these various meaningful units. Three prominent schools – Vyākaraṇa Nyāya and Mīmāṁsā – developed their own process of sentential verbal import. Among the three schools, we found the śābdabodha process of Vyākaraṇa delink the meaning from the real world. For them the meaning of a word is conceptual and resides in the mind and not in the referents in the real world. This grounding of Vaiyākaraṇas to the “world of words” marks a level of semantics that can be extracted purely from the linguistic expression without appealing to the extralinguistic information. We followed Vaiyākaraṇas’ treatment of language analysis. Barring a minor difference of chief-qualiﬁcand, the Mīmāṁsakas’ treatment is also similar to that of Vaiyākaraṇas. The Vaiyākaraṇas’ main concern is the word and as such the Vyākaraṇa-śāstra is also called as a Padaśāstra, while the Mīmāṁsakas’ main concern is interpretation of Vedic sentences, hence it is called Vākya-śāstra. Both the Padaśāstra and Vākyaśāstra provided us important clues for sentential analysis.

			We found the complete treatment of the sentential understanding so formal that it was quite natural to model the process automatically. In this monograph we discussed the modelling of three essential conditions – ākāṅkṣā, yogyatā and sannidhi – and discussed parsing algorithms centred around them. There is still scope for improving these algorithms further, especially taking into account the linguistic clues for efficient traversing of the graphs.

			Ākāṅkṣā and sannidhi deal with the relation between words and possible word orders. Yogyatā concerns with the word meanings. In modelling yogyatā, instead of modelling it as a presence of compatibility, we modelled it as an absence of non-congruity. This helped us to reduce the probable solutions from millions to hundreds thereby improving the precision. Modelling the non-congruity was much easier since it just involved access to a special semantic category of words termed guṇa-vacana. Modelling the congruity on the other hand would have required a huge knowledge base of the compatibility of substantives to be a speciﬁc kāraka for every verb, compatibility of a substantive to be in a genitive relation with another one and so on. And this compatibility can be either with respect to the primary meaning or the extended or metaphoric meaning. This would have exploded the knowledge base further. The limited success of the Cyc project (that handles only the primary meanings) suggests us the difficulties involved in organizing such a knowledge base. In a limited in-house experiment at IIT Kanpur, the possibility of using yogyatā for word sense disambiguation was tried. But that experiment conﬁned only to the primary meanings and did not cover the extended meanings. Based on the experience, I am of the opinion that it would be appropriate to use the state-of-the-art machine-learning algorithms along with the insights from the Indian theories of meaning for handling meaning compatibilities.

			It is worth exploring the concept of tātparya further for word sense disambiguation. The comparative study between various classiﬁcations of lakṣaṇā (see Appendix B) may provide new insights into the possible extensions of word meanings that may help further in their mechanical treatment. The theories developed by rhetoricians provide a sound basis for the treatment of vyaṅgyārtha (suggestion). Though the suggestion is subjective, and also depends on the context, the theories tell us the possible dimensions the meaning can be extended to account for the suggestion.

			The current algorithms perform poorly if the input is not in canonical word order. In order to make the parser more user friendly it is appropriate that the parser operates on the verse directly without having any requirement for canonical word order. All the existing commentaries on various Sanskrit kāvyas provide the prose order of the verses. Machine-learning algorithms on such parallel corpus could provide a mechanical way to generate the canonical word order of any verse.

			In this monograph, we conﬁned ourselves to Sanskrit processing and have not discussed the possibilities of use of these theories for processing other languages. As has been mentioned brieﬂy in Chap. 4, there are ongoing efforts to exploit them for modern Indian languages. Tree banks for various modern Indian languages such as Hindi, Urdu, Marathi, Telugu and Kannada are being developed following the Pāṇinian dependency framework. There also have been efforts to look at English grammar from Pāṇinian perspective. Modules for mapping the output of dependency parsers for English such as Minipar based on the theory of Minimalism, Stanford Parser, Link parser, etc. have been developed and are being used in the Anusaaraka1 system.

			In conclusion, we ﬁnd that the treatment of language analysis in Indian grammatical tradition is devoid of any subjective judgements and is purely mechanical. This makes it a natural candidate for use in computational processing of not only Sanskrit but of other languages as well.

			

			
				
					1		http://anusaaraka.iiit.ac.in	

				

			

		

	
		
			Appendices

		

		
			Appendix A

			Evaluation of Parsers : Various Parameters

			Two important considerations for the evaluation of parsers are (a) measure of correctness of a parse, and (b) the speed. In the following we deﬁne various measures of correctness of a parse. We have already discussed the time complexity of each of the above algorithms, and hence we skip any discussion on the speed here.

			Measure of Correctness of Parse

			To test the correctness of the parser output, we need manually annotated sentences, called the GOLD data. There are various metrics for the evaluation of a parser.

				1.	Exact Match or Matching Dependency Trees. Exact match is the obvious metric. Here we run all the sentences in the GOLD data through the parser and compare the outputs. All those outputs that match with the GOLD data pass the test. Thus this is a 0–1 metric. Either the output matches completely or does not match.

					This metric is not much useful. It was observed that only one statement out of three sentences produce Exact Match. Further, since this metric just produces a binary value, no information about where exactly the parse has failed is available. Such an information would be of immense help to the developers of the parser. This led to other metrics for evaluation of the parser.

				2.	Unlabelled Dependency Tree. This metric matches the two dependency trees ignoring the labels. This metric also produces 0–1 score. If the dependency tree produced by the parser matches exactly with the GOLD data ignoring the labels, then the score is 1, else it is 0.

					This score is useful when there is no agreement with regard to the edges’ labels or when the granularity of the edges do not match. In such cases, one may ignore the labels and check at least whether the two structures agree with respect to the dependency structure.

				3.	Attachment Scores. Attachment scores are of two types: labelled accuracy and unlabelled accuracy. Labelled Attachment Score (LAS) checks for each dependency edge whether the two relata and the edge label match. The Unlabelled Attachment Score (UAS) ignores the edge label and checks whether the two relata match exactly. In these two scores, we count the matched edges against the total number of edges in a tree. Sentences with One Wrong Attachment (OWAS) is another score that calculates the percentage of sentences that went wrong in only one attachment.

				4.	Precision and Recall. Since our parser produces all parses, in addition to the above scores, we would also like to measure the precision and recall. Precision tells us how many of the parses produced are valid. And recall tells us in how many cases machine failed to produce the correct parse(s).

				5.	Ranking the Correct Parse. In addition to these two scores, a score to test the effectiveness of ranking module is also needed. This score marks the rank of the correct parse(s) among the parses produced.

				6.	Relation-wise Performance Index. The relation-wise performance index computes the performance score for each relation. This helps in ﬁnding out which relations perform poorly and improve them further.

				7.	Confusion Matrix. When the same case marker marks more than one relation in different contexts, in the absence of a necessary and sufficient condition for mutual compatibility, there are chances that machine confuses between the labels. This confusion is captured in the confusion matrix.

			A.1 Precision and Recall

			Precision tells us about how precise are the results produced by machine, or how much among the produced results is relevant and how much is irrelevant. Recall tells how many results machine could produce out of all possible results, or among all the relevant answers, how many relevant answers machine could produce.

			Suppose in a given sentence there are twenty-one words. So there are twenty relations in the parsed structure. If machine can parse this sentence, then it would also produce twenty relations between these words. This parse will be correct only if all the twenty relations match with those in the correct parse. In such a case, the precision and recall are both 1, since machine has precisely produced all the relations. Now suppose, machine produces only eighteen relations. Among these eighteen relations produced by the machine, only eight relations match with those of the correct parse. That means, machine is [image:] per cent precise. Further, since machine could produce only eight relations correctly among the twenty relations, its recall rate is [image:] per cent.

			Let us now see the general formula. Suppose, in fig. A1.1, the left circle stands for all relations in the correct parse and the right circle stands for all relations in the machine produced parse. Let A be the number of correct relations missed by the machine, B be the number of relations correctly predicted by the machine and C be the number of relations predicted by machine that are wrong. Then the precision (P) and recall (R) are deﬁned as below:

			
				
					[image:]
				

			

			
				
					[image:]
				

			

		

	
		
			Appendix B

			Classiﬁcation of Lakṣaṇā

			There is no unanimity among various schools regarding the classiﬁcation of metaphoric meaning. Below we list some of them:

				•	Gautama in the Nyāyasūtra. According to Gautama the transfer of meaning from primary to secondary is possible only if the secondary meaning is closely related to the primary referent. He enumerates ten such relations with an example for each.

			sahacaraṇa-sthāna-tādarthya-vr̥tta-mānadhāraṇa-sāmīpya-yoga-sādhanā-’dhipatyebhyo brāhmaṇa-mañca-kaṭa-rāja-saktu-candana-gaṅgā-śāṭaka-anna-purveṣv atabhāve ’pi tadupacāraḥ।

			– Nyāyasūtra II.2.62

					[In this sūtra, upacāra is the term used for the secondary or extended meaning.]

				1.	Association (sahacaraṇa). In the example, yaṣṭikām bhojaya (feed a stick), a brāhmaṇa, who always carries a stick, is referred to as a yaṣṭika.

				2.	Location (sthāna). In the example mañcāḥ krośanti (the cots cry), the term mañca is being used for “the children on the cot”.

				3.	Purpose (tādarthya). To a person who is collecting reeds for the purpose of making a mat, if somebody asks what is he doing, he may reply with kaṭam karomi (I am making a mat). In reality, he is just collecting the raw material. But since the purpose for this collection is to make a mat, and collection is an essential part of the process of mat creation, we see the use of the term for aimed activity for which the current activity is a purpose.

				4.	Behaviour (vr̥tta). Based on the behaviour of a person, sometimes, one may use a term that stands for the characteristic behaviour. For example, a king who behaves like a yama may be described as yamo rājā (a king who is yama).

				5.	Measure (māna). Sometimes a word is used in the sense of measure of volume. For example “one cup tea”, which means “tea whose volume is one cup”. The standard Sanskrit example is āḍhakasaktavaḥ which means “one āḍhaka of ﬂour”.

				6.	Weighing (dhāraṇa). The measure can be in terms of weight as well. For example, tūlācandanam means “sandalwood weighed in the balance”.

				7.	Proximity (sāmīpya). A word may sometimes refer to a place that is in proximity. For example gaṅgāyām gāvaścaranti (cows are grazing in the Ganges), actually means “the cows are grazing on the banks of Ganges”.

				8.	Inherent connection (yoga). A quality is used to refer to the substance it belongs to. For example kr̥ṣṇaḥ paṭaḥ (a black cloth). Here, the word kr̥ṣṇaḥ (black) does not stand for the black colour but the thing that is black. “Beauty is praised”, here the word beauty stands for the thing that is beautiful.

				9.	Cause (sādhana). A substance that is the cause of something may be equated with it. For example, annam prāṇāḥ (food is life). Here food, which is the cause of life, is referred to as life itself.

				10.	Prominence (adhipati). A prominent person, because of his achievements or hold over an institution or a family, may be referred to as the institution or the family. For example, ayam kulam (he is the family).

				•	Patañjali in his Mahābhāṣya also discusses four types of transfers of meanings:1

				1.	Location (tat-stha). The examples quoted here are mañcaḥ hasanti (the cots laugh) and girir dahyate (the hill is burning). Here “the cots” refers to the “children sitting/sleeping on the cot” and “the hill” refers to the “trees on the hill”. This is similar to the location as described by Gautama.

				2.	Quality (tad-dharma). This is similar to the behaviour (vr̥tta) of Gautama. The word refers to the quality in the referent rather than the referent. For example, jaṭi brahmadatta (the man with matted hair is Brahmadatta). When a man with matted hair has the same quality as that of Brahmadatta, the man is referred to as Brahmadatta. Another popular example is siṁho māṇavakaḥ (the boy is a lion) to mean the boy is as brave as a lion.

				3.	Proximity (tat-samīpa). This is similar to the proximity as used by Gautama. The example Patañjali quotes here is gaṅgāyām ghoṣaḥ (the village on the River Ganges) or kūpe gargakulam (Garga’s house is on the well).

				4.	Association (tat-sahacara). This is similar to the sahacara of Gautama. Patañjali’s example is kuntān praveśaya (fetch the lances), yaṣṭīḥ praveśaya (fetch the sticks) where the words “lances” and “sticks” are used to indicate the people who carry them.

				•	Jaimini in the Mīmāṁsāsūtra has listed six usages showing the metaphoric or extended usages. They are:

				1.	Accomplishment of the purpose (tatsiddhi). The one who is responsible for accomplishment of the purpose is sometimes termed as the doer of the action. For example, in a sacriﬁce, the grass bundle accomplish the purpose served by the sacriﬁcer and hence sometimes the grass bundle itself is called the sacriﬁcer as in yajamānaḥ prastaraḥ.

				2.	Same origin (jāti) (**Check the following). X is related to Y if they are siblings. For example, āgneyo vai brāhmaṇaḥ (the brāhmaṇa is related to Agni), since both are originated from Prajāpati.

				3.	Similarity (sārūpya). X is called Y due to the similarity. This similarity may be in the appearance, function, etc. For example, ādityo yūpaḥ (the sacriﬁcial post is the sun). Here the similarity is due to the similarity in brightness of both the objects.

				4.	Praise (praśaṁsā). The examples discussed under this category are apaśavo vā anye go-aśvebhaḥ (those other than cow and horse are not animals) and yad aghr̥tam abhojanam tat (that without ghee is not food). In the ﬁrst case, the implied meaning is: cow and horse are the best animals. In the second case, ghee is considered to be the best food.

				5.	Preponderance (bhūma). When X is related to Y, even in the absence of Y, X is termed Y-related X. For example there are certain hymns which have the word sr̥ṣṭi in them. The bricks used to construct an alter while chanting these hymns are termed sr̥ṣṭi bricks. Note here that the hymn may or may not have a word sr̥ṣṭi in it.

				6.	Presence of a marker (liṅgasamavāya). People who generally carry umbrella are termed chatriṇaḥ. Similarly people typically carrying a stick are termed daṇḍinaḥ. While referring to such people one may say chatriṇo yānti (people with umbrellas are going), or daṇḍino yānti (people with sticks are going). The chatrī or daṇḍa acts as a liṅga (marker) to refer to such people. It is not necessary again that at the moment of utterance, all the persons carry an umbrella or a stick.

				•	Mukula Bhaṭṭa in his Abhidhāvr̥ttimātr̥kā mentions ﬁve types of metaphoric usages:

			abhidheyena sambandhāt sādr̥śyāt samavāyataḥ ।

			vaiparityāt kriyāyogāl lakṣaṇa pañcadhā matā ।।

					Some kind of literal meaning (abhidheya sambandha), similarity (sādr̥śya), association (samavāya), contrariety (vaiparītya) and association with some action (kriyā-yoga) are the ﬁve indications (of metaphoric meaning).

					We illustrate them with an example each.

				1.	Abhidheya sambandha (some relation with literal meaning). The example discussed here is dvirepha, literally meaning two rs. The word bhramara has two rs, and hence sometimes it is referred to as dvirepha. Such an extension will make sense only if such usages are in vogue. Else the communication will break down.

				2.	Sādr̥śya (Similarity). This is similar to the ones discussed earlier by other scholars. The example is siṁho māṇavakaḥ (the boy is a lion).

				3.	Samavāya (association, such as proximity). The illustrative example is gaṅgāyām ghoṣaḥ.

				4.	Vaiparītya (contrariety). Ironical sentences such as br̥haspatir ayam mūrkhaḥ (this fool is a br̥haspati – the teacher of gods) come under this category.

				5.	Kriyā-yoga (association with some action). Proper nouns with etymological meanings are used to describe persons with similar characteristics. For example, one who is very ﬁrm or steady in a battle is called yudhiṣṭhira.

				•	Nāgeśa in his Paramalaghumañjūṣā adds tādarthya also to the list given by Patañjali.

			tātsthyāt tathaiva tāddharmyāt tatsāmīpyāt tathaiva ca ।

			tatsāhacaryāt tādarthyāt jñeyā vai lakṣaṇā budhaiḥ ।।

					The meaning of tādarthya is purpose. During the prize distribution function, the organizer after wrapping the gift, tags it with the name of the receiver. Though the tag is for the gift, in reality the tag refers to a person whom the gift is meant for. But we refer to the gift tagged Y as Y and not as “for Y”.

					The example discussed in the literature is: the pillar which is for Indra is called Indra (sthāṇuḥ indraḥ).

			

			
				
					1		caturbhiḥ prakārair atasmin sa ity etad bhavanti, tātsthyāt, tāddharmyāt, tatsāmīpyāt, tatsāhacaryād iti। – Mahābhāṣya under A 4.1.48

				

			

		

	
		
			

		

	
		
			Appendix C

			List of Relations in Pāṇinian Grammar

			Compiled by K.V. Ramakrishnamacharyulu

			These relations are first published in (Ramakrishnamacharyulu, 2009).

			1 Proposed Tagset

			1.1 Inter-sentential relations

			1. 	pūrvakālīnatvam

				1. 	prayojanam (purpose of the main activity)

				2. 	samakālīnatvam (simultaneity)

				3. 	bhāvalakṣaṇa saptamī

			• 	anantarakālikatvam (time of the completion of preceding activity)

				•	samakālīnatvam (simultaneous events)

				• 	pūrvakālīnatvam (time of the main activity before the starting of the subordinate activity)

			1.1.1 Relations denoted by words

				1. 	samānakālīnatvam

				2. 	pratibandhaḥ (conditional relation)

				3. 	kāraṇasatve’pi kāryābhāvaḥ, kāraṇābhāve’pi kāryotpattiḥ (non-productive effort (or) product without cause)

				4. 	hetuhetumadbhāvaḥ (cause and effect)

				5. 	anantarakālīnatvam (following action)

				6. 	samānādhikaraṇatvam (co-location)

				7. 	asāphalyam (non-fulfilment of expected activity)

			2 Sentence Internal Relations

			2.1 Relations related to the activity-denoting words

				• 	kāraka relations

				– 	kartā

				* 	anubhavī kartā (experiencer)

				* 	amūrta-kartā (abstract)

				* 	prayojaka-kartā

				* 	prayojya-kartā

				* 	madhyastha-kartā

				* 	abhipreraka-kartā/utpreraka-kartā (cause for temptation)

				* 	karma-kartā

				* 	karaṇa-kartā

				* 	ṣaṣṭhī-kartā

				– 	karma

				* 	utpādyam (created)

				* 	vikāryam (raw meterial)

				* 	prayojya-kartā

				* 	ādhāra-karma (location)

				* 	deśa (village, town, state, country, etc.)

				* 	kāla (time)

				* 	bhāva (activity)

				* 	mārga (road measurement)

				* 	sampradānam (recipient)

				* 	anīpsitam (not intended)

				* 	akathitam (not expected)

				* 	gati-karma

				* 	karaṇam (instruments of playing)

				* 	yaṁ prati kopaḥ

				* 	manya-karma (in disrespect)

				* 	ṣaṣṭhī-karma

				– 	karaṇam (instrument)

			* 	karma

				* 	parikrayaṇam (money in bonded labour)

				– 	sampradānam (recipient)

				* 	satvāśrayaḥ (recipient with ownership)

				* 	svīkartā (recipient without ownership)

				* 	kriyayā abhipreta-sampradānam (intended to relate with activity)

				* 	jñīpsyamāna-sampradānam (addressed through praise, etc.)

				* 	uttama¦ṇa (a creditor)

				* 	īpsitam (desired)

				* 	yaṁprati kopaḥ saḥ (point of anger)

				* 	prīyamāṇa (location of desire)

				* 	yasya vipraśna (enquiry about)

				* 	parikrayaṇam (money in bonded labour)

				– 	apādānam

				* 	bhaya-hetu (cause of fear)

				* 	ākhyāta-upayoge (teacher)

				* 	yasmāt vāraṇam (point for obstruction)

				* 	yasya/yasy adarśanam iṣṭam saḥ/sā (person intended not to be seen)

				* 	prak¦ti (raw material)

				* 	prabhava (place of first appearance)

				* 	parājaya (defeat from activity)

				– 	adhikaraṇam (location)

				* 	kāla (time)

				* 	deśa (place)

				* 	viṣaya

				* 	samayasya avadhi (time duration)

				* 	antarāla-deśa (place in between)

				• 	a-kārakasambandhaḥ sākṣāt kriyayā (non-kāraka relations, but direct relations with the activity)

				–	sambodhanam (addressed)

				– 	prasajyapratiṣedhaḥ (uncompounded negation)

				– 	sāmyam (similarity)

				– 	kriyā-āv¦ttyantarālasamayaḥ (time duration between the repetition of the same activity)

				– 	tādarthya (purpose)

				– 	hetu (cause)

				– 	vīpsā (repetition)

				– 	kriyā-āv¦tti-gaṇanā (counting of repetition)

				– 	kriyāviśeṣaṇam (manner adverb)

				– 	atyanta-sambaddhaḥ kālaḥ (complete relation with time)

				– 	atyanta-sambaddhaḥ mārgaḥ (complete relation with road)

				– 	atyanta-sambaddhaḥ kālaḥ (complete relation with time and with result)

				• 	Other Relations

				– 	ṣaṣṭhī relation

				– 	ārambhasamayaḥ māpane (starting point of time)

				– 	ārambhadeśaḥ māpane (starting point of place)

				– 	lakṣaṇam (point of direction)

				– 	tādarthya (purpose)

				– 	hetu

				– 	saha (associative)

				– 	vinā (non-associative)

				– 	vibhakta (comparison between two)

				– 	nirdhāraṇam (isolating one from a group – in the superlative degree context)

		

		
			Appendix D

			List of Relations Used in the Sanskrit Parser

				• 	sambandhaḥ

				– 	Kāraka sambandhāḥ

				– 	kartā

				* 	prayojaka-kartā

				* 	prayojya-kartā

				– 	karma

				* 	mukhya-karma

				* 	gauṇa-karma

				* 	vākya-karma

				– 	karaṇaṁ

				– 	sampradānaṁ

				– 	apādānaṁ

				– 	adhikaraṇaṁ

				* 	kāla-adhikaraṇaṁ

				* 	deśa-adhikaraṇaṁ

				* 	viṣaya-adhikaraṇaṁ

				* 	lyapkarma-adhikaraṇaṁ

				– 	Kāraketara sambandhāḥ

				* 	Kriyā-kriyā-sambandhāḥ

				· 	pūrva-kālaḥ

				· 	vartamāna-samāna-kālaḥ

				· 	bhaviṣyat-kālaḥ

				· 	bhāvalakṣaṇa-pūrva-kālaḥ

				· 	bhāvalakṣaṇa-vartamāna-kālaḥ

				· 	bhāvalakṣaṇa-anantara-kālaḥ

				· 	sahāyaka-kriyā

				* 	Kriyā-sambandhāḥ

				· 	sambodhyaḥ

				· 	hetuḥ

				· 	prayojanam

				· 	kart¦-samānādhikaraṇam

				· 	karma-samānādhikaraṇam

				· 	kriyāviśeṣaṇam

				· 	pratiṣedhaḥ

				* 	Nāma-nāma-sambandhāḥ

				· 	ṣaṣṭhī-sambandhaḥ

				· 	vākyakarmadyotaka

				· 	udgāravācakaḥ

				· 	aṅgavikāraḥ

				· 	vīpsā

				· 	viśeṣaṇam

				· 	sambodhana-sūcakam

				· 	vibhaktam

				· 	avadhiḥ

				· 	abhedaḥ

				· 	nirdhāraṇam

				· 	atyanta-saṁyogaḥ

				· 	apavarga-sambandhaḥ

				· 	srota

				· 	ābhimukhya

				– 	Upapada-sambandhāḥ

				* 	svāmī

				* 	saha-arthaḥ

				* 	vinā-arthaḥ

				* 	ittambhūtaḥ

				* 	sandarbha-binduḥ

				* 	tulanā-binduḥ

				– 	Inter-sentential relations

				* 	anuyogī

				* 	pratiyogī

				* 	nitya-sambandhaḥ

				– 	Conjuncts and disjuncts

				* 	samuccitaḥ

				* 	samuccaya-dyotakaḥ

				* 	anyataraḥ

				* 	anyatara-dyotakaḥ

			Note: The bold entries are the headings and do not indicate relation

			labels.

		

	
		
			
				
					
					
				
				
					
							
							Glossary

						
					

					
							
							abhidhā

						
							
							primary meaning

						
					

					
							
							adhikaraṇa

						
							
							locus

						
					

					
							
							adhyāya

						
							
							chapter

						
					

					
							
							ajahad-lakṣaṇā

						
							
							inclusive implication

						
					

					
							
							akarmaka

						
							
							intransitive

						
					

					
							
							Ālaṁkārikas

						
							
							rhetoricians

						
					

					
							
							anvaya

						
							
							the natural order of words in a sentence

						
					

					
							
							apādāna

						
							
							source

						
					

					
							
							ākāṅkṣā

						
							
							expectancy

						
					

					
							
							bhedaka

						
							
							differentiator

						
					

					
							
							bhramātmaka-jñāna

						
							
							false cognition

						
					

					
							
							dhātu

						
							
							verbal root

						
					

					
							
							dravya

						
							
							substance

						
					

					
							
							gauṇa-artha

						
							
							secondary meaning

						
					

					
							
							gauṇī

						
							
							qualitative implication

						
					

					
							
							guṇa

						
							
							property

						
					

					
							
							hetu

						
							
							cause

						
					

					
							
							jahad–ajahad-lakṣaṇā

						
							
							implication with partial inclusion

						
					

					
							
							jahad-lakṣaṇā

						
							
							exclusive implication

						
					

					
							
							karaṇa

						
							
							instrument

						
					

					
							
							karman

						
							
							goal/patient

						
					

					
							
							kartr̥

						
							
							doer of the action (agent)

						
					

					
							
							kartr̥samānādhikaraṇa

						
							
							a predicative adjective

						
					

					
							
							kāraka

						
							
							semantic role

						
					

					
							
							khaṇḍa-pakṣa

						
							
							analytic approach

						
					

					
							
							kr̥danta

						
							
							verbal noun

						
					

					
							
							lakṣaṇā

						
							
							secondary/metaphoric meaning/ implication

						
					

					
							
							liṅga

						
							
							gender

						
					

					
							
							Mīmāṁsā

						
							
							exegesis

						
					

					
							
							Mīmāṁsaka

						
							
							exegesist

						
					

					
							
							mukhya-viśeṣya

						
							
							chief qualiﬁcand

						
					

					
							
							mukhyārtha

						
							
							primary meaning

						
					

					
							
							Naiyāyika

						
							
							logician

						
					

					
							
							Navya-Nyāya

						
							
							Neo-logic

						
					

					
							
							nirūḍha-lakṣaṇā

						
							
							natural/unintentional implication

						
					

					
							
							Nyāya

						
							
							Indian school of logic

						
					

					
							
							padārtha

						
							
							word meaning

						
					

					
							
							prakr̥ti

						
							
							stem/root

						
					

					
							
							pramātmaka-jñāna

						
							
							true cognition

						
					

					
							
							pratyaya

						
							
							suffix

						
					

					
							
							prayojana

						
							
							purpose

						
					

					
							
							prayojanavatī-lakṣaṇā

						
							
							intentional implication

						
					

					
							
							prātipadika

						
							
							nominal root

						
					

					
							
							pāda

						
							
							a quarter/a fourth part

						
					

					
							
							rūḍha

						
							
							conventional

						
					

					
							
							śakti

						
							
							relation between a word and its meaning

						
					

					
							
							śābdabodha

						
							
							verbal import

						
					

					
							
							śloka

						
							
							verse

						
					

					
							
							śleṣa

						
							
							pun

						
					

					
							
							ṣaṣṭhī

						
							
							genitive

						
					

					
							
							sakarmaka

						
							
							transitive

						
					

					
							
							samasta-pada

						
							
							a compound word

						
					

					
							
							samāsa

						
							
							compound

						
					

					
							
							sambandha

						
							
							relation

						
					

					
							
							sampradāna

						
							
							beneﬁciary

						
					

					
							
							saṁhitāpāṭha

						
							
							continuous rendition

						
					

					
							
							sandhi

						
							
							euphonic combination of adjacent

						
					

					
							
							sannidhi

						
							
							proximity

						
					

					
							
							sūtra

						
							
							a concise formula

						
					

					
							
							taddhita

						
							
							secondary derivative

						
					

					
							
							tātparya

						
							
							purport

						
					

					
							
							utthāpya

						
							
							to be raised

						
					

					
							
							utthita

						
							
							aroused

						
					

					
							
							Vaiyākaraṇa

						
							
							grammarian

						
					

					
							
							vākyārtha

						
							
							sentential meaning

						
					

					
							
							vibhakti

						
							
							case

						
					

					
							
							vibhakti-pratyaya

						
							
							case suffix

						
					

					
							
							viśeṣaṇa

						
							
							modiﬁer/qualifier

						
					

					
							
							viśeṣya

						
							
							head/modiﬁed/qualified

						
					

					
							
							vr̥tti

						
							
							relation between a word and its meaning

						
					

					
							
							vyañjanā

						
							
							suggestive meaning

						
					

					
							
							vyākaraṇa

						
							
							grammar

						
					

					
							
							yaugika

						
							
							etymological

						
					

					
							
							yaugikarūḍha

						
							
							both etymological and conventional

						
					

					
							
							yogarūḍha

						
							
							etymological but restricted by convention

						
					

					
							
							yogyatā

						
							
							mutual compatibility/congruity

						
					

				
			

		

	
		
			Bibliography

			Abney, Steven P., 1989, “A Computational Model of Human Parsing”, Journal of Psycholinguistic Research, 18: 129-44.

			Ādyāprasādamiśraḥ, 1988, Kauṇḍabhaṭṭaviracitaḥ Vaiyākaraṇabhūṣaṇasāraḥ, Vārāṇasī: Sampūrṇānanda Saṁskr̥ta Viśvavidyālayaḥ.

			Aiyar, V. T. Viswanatha, 1969, Śabdataraṅgiṇī, Madras: Sanskrit Education Society.

			Anantpur, Amba P., 2009, “Anusaaraka: An Approach for MT Taking Insights from the Indian Grammatical Tradition”, PhD thesis, University of Hyderabad.

			Anil Kumar, 2012, “An Automatic Sanskrit Compound Processing”, PhD thesis, University of Hyderabad.

			Anil Kumar, Vipul Mittal and Amba Kulkarni, 2010, “Sanskrit Compound Processor”, in Proceedings of the International Sanskrit Computational Linguistics Symposium, ed. G.N. Jha, Berlin: Heidelberg, Springer-Verlag LNAI 6465.

			Apte, V.S., 1885 [1925], The Student’s Guide to Sanskrit Composition: A Treatise on Sanskrit Syntax for Use of Schools and Colleges, 9th edn, Bombay: The Standard Publishing Company.

			Aralikatti, R.N., 1991, “A Note on Word Order in Modern Spoken Sanskrit and Some Positive Constraints”, in Studies in Sanskrit Syntax: A Volume in Honour of the Centennial of Speijer’s Sanskrit Syntax (1886–1986), ed. Hans Henrich Hock, pp. 13-18, Delhi: Motilal Banarsidass.

			Attardi, Giuseppe, 2006, “Experiments with a Multilanguage Non-projective Dependency Parser”, in Proceedings of CoNLL, ed. Luis Marquez and Dan Klein, pp. 166-70, New York: Association for Computational Linguistics.

			Bhagirath, Hariprasad, 1901, Samāsacakra, Bombay: Jagadishwar Press.

			Bhanumati, B., 1989, An Approach to Machine Translation among Indian Languages, Technical Report, Dept. of CSE, IIT Kanpur.

			Bharati, Akshar, Vineet Chaitanya and Rajeev Sangal, 1995, Natural Language Processing: A Paninian Perspective, New Delhi: Prentice-Hall.

			Bharati, Akshar, Ashok Gupta and Rajeev Sangal, 1995, “Parsing Paninian Grammar with Nesting Constraints”, in Proceedings of 3rd NLP Pacific Rim Symposium, pp. 1-6, Seoul.

			Bharati, Akshar, Samar Husain, Bharat Ambati, Sambhav Jain, Dipti M. Sharma and Rajeev Sangal, 2008, “Two Semantic Features Make All the Difference in Parsing Accuracy”, in Proceedings of the Sixth International Conference on Natural Language Processing (ICON-08), Pune: C-DAC.

			Bharati, Akshar and Amba Kulkarni, 2010, “Information Coding in a Language: Some Insights from Paninian Grammar”, Dhīmahi, Journal of Chinmaya International Foundation Shodha Sansthan, I.1: 77-91.

			Bharati, Akshar and Rajeev Sangal, 1990, “A Karaka Based Approach to Parsing of Indian Languages”, in Proceedings of International Conference on Computational Linguistics (vol. 3), Helsinki: Association for Computational Linguistics.

			———, 1993, “Parsing Free Word Order Languages in the Paninian Framework”, in Proceedings of the Conference, 31st Annual Meeting of the Association for Computational Linguistics, pp. 105-11, Morristown, NJ: Association of Computational Linguistics.

			Bhate, Saroja and Johannes Bronkhorst, 1993, Bhartr̥hari: Philosopher and Grammarian, Delhi: Motilal Banarsidass.

			Bhatt, V.P., 1994, Gadādhara’s Śaktivāda, Delhi: Eastern Book Linkers.

			Bhattacharyya, Pushpak, 1986, “A System for Sanskrit to Hindi Translation”, MTech, dissertation, IIT Kanpur.

			Bodirsky, M., M. Kuhlmann and M. Möhl, 2005, “Well-nested Drawings as Models of Syntactic Structure”, in Proceedings of the Tenth Conference on Formal Grammar and Ninth Meeting on Mathematics of Language, ed. James Rogers, pp. 195–203, Edinburgh: University of Edinburgh.

			Brahmadatta, Jijñāsu, 1979, Aṣṭādhyāyī (Bhāṣya) Prathamāvr̥tti, vol. I, Sonepat: Ramlal Kapoor Trust Bahalgadh.

			Cardona, George, 1988, Pāṇini: His Work and Its Traditions, Delhi: Motilal Banarsidass.

			———, 2007, Pāṇini and Pāṇinīyas on Śeṣa Relations, Kochi: Kunjunni Raja Academy of Indological Research.

			———, 2009, “On the Structure of Pāṇini’s System”, in Sanskrit Computational Linguistics, 1 & 2, ed. Gérard Huet, Amba Kulkarni and Peter Scharf, Springer-Verlag LNAI 5402.

			Caturvedī, Mithileśa, 1992, Śabdārthamīmāṁsā, Varanasi: Sampurnananda Samskrit Visvavidyalaya.

			Convington, Michael A., 2001, “A Fundamental Algorithm for Dependency Parsing”, in Proceedings of 39th Annual ACM Southwest Conference, ed. John A. Miller and Jeffrey W. Smith, pp. 95-102, Association for Computing Machinery.

			Coward, Harold G., 1983, Studies in Indian Thought, Delhi: Motilal Banarsidass.

			Dash, Achyutanand, 1991, “The Syntactic Role of Adhi in the Pāṇinian Kāraka System”, in Pāṇinian Studies: S.D. Joshi Falicitation Volume, ed. Madhav M. Deshpande and Saroja Bhate, pp. 135-60, Michigan: University of Michigan.

			Dekang Lin, 2003, “Dependency-Based evaluation of MINIPAR”, in Treebanks: Building and Using Parsed Corpora, ed. Abeillè Anne, pp. 317-29, Dordrecht: Springer Netherlands.

			Deshpande, Madhav M., 2007, The Meaning of Nouns, New Delhi: D.K. Printworld.

			Devasthali, G.V., 1959, Mīmāṁsā: The Vākyaśāstra of Ancient India, Bombay: Booksellers’ Publishing Co.; reprint 2011, Mīmāṁsā: The Ancient Indian Science of Sentence Interpretation, ed. with Introduction by V.N. Jha, Delhi: Sri Satguru Publications.

			Gent, Ian P., Jefferson Chris and Miguel Ian, 2006, “Minion: A Fast, Scalable Constraint Solver”, in The Proceedings of 17th European Conference on Artificial Intelligence, pp. 98-102.

			Gillon, Brendan S., 1993, “Bhartr̥hari’s solution to the problem of asamartha compounds”, E‘tudes Asiatiques Studien, 47(1): 117-33.

			———, 1995, “Autonomy of Word Formation: Evidence from Classical Sanskrit”, Indian Linguistics, 56 (1-4): 15-52.

			———, 1996, “Word Order in Classical Sanskrit”, Indian Linguistics, 57(1): 1-35.

			———, 2002, “Bartr̥hari’s Rule for Unexpressed Kārakas: The Problem of Control in Classical Sanskrit”, in Indian Linguistic Studies: Festschrift in Honor of George Cardona, ed. Madhav M. Despande and Peter E. Hook, Delhi: Motilal Banarsidass.

			———, 2005, “Subject-Predicate Order in Classical Sanskrit”, in Language and Grammar: Studies in Mathematical Linguistics and Natural Language, ed. Philip Scott, Claudia Casadio and Robert Seely, pp. 211-25, Stanford, CA: Center for the Study of Language and Information.

			———, 2007, “Pāṇini’s Aṣṭādhyāyī and Linguistic Theory”, J. Indian Philos., 35: 445-68.

			———, 2009, “Tagging Classical Sanskrit Compounds”, in Sanskrit Computational Linguistics 3rd, edn. Amba Kulkarni and Gérard Huet, pp. 98-105, Springer-Verlag LNAI 5406.

			Goyal, Pawan, Vipul Arora and Laxmidhar Behera, 2009, “Analysis of Sanskrit Text: Parsing and Semantic Relations”, in Sanskrit Computational Linguistics, 1 & 2, ed. Gérard Huet, Amba Kulkarni and Peter Scharf, pp. 200-18, Springer-Verlag LNAI 5402.

			Goyal, Pawan and Gérard Huet, 2013, “Completeness Analysis of a Sanskrit Reader”, in Proceedings of 5th International Symposium on Sanskrit Computational Linguistics, New Delhi: D.K. Printworld.

			Goyal, Pawan, Gérard Huet, Amba Kulkarni, Peter Scharf and Ralph Bunker, 2012, “A Distributed Platform for Sanskrit Processing”, in Proceedings of 24th COLING, Mumbai. URL: https://www.aclweb.org/anthology/C/C12/C12-1062.pdf.

			Goyal, Pawan, Amba Kulkarni and Laxmidhar Behera, 2009, “Computer Simulation of Aṣṭādhyāyī: Some Insights”, in Sanskrit Computational Linguistics, 1 & 2, ed. Gérard Huet, Amba Kulkarni and Peter Scharf, pp. 139-61, Springer-Verlag LNAI 5402.

			Havelka, J., 2005, “Projectivity in Totally Ordered Rooted Trees”, Prague Bulletin of Mathematical Linguistics, 84: 13-30.

			Hellwig, Oliver, 2009a, “Extracting Dependency Trees from Sanskrit Texts”, in Third International Sanskrit Computational Linguistics Symposium, ed. Amba Kulkarni and Gérard Huet, pp. 106-15, Springer-Verlag LNAI 5406.

			———, 2009b, “Sanskrit Tagger a Stochastic Lexical and POS Tagger for Sanskrit”, in Sanskrit Computational Linguistics, 1 & 2, ed. Gérard Huet, Amba Kulkarni and Peter Scharf, pp. 266-77, Springer-Verlag LNAI 5402.

			———, 2010, “Performance of a Lexical and POS Tagger for Sanskrit”, in Proceedings of the 4th International Sanskrit Computational Linguistics Symposium, Springer-Verlag.

			Hock, H.H. (ed.), 2009, Studies in Sanskrit Syntax, Delhi: Motilal Banarsidass.

			Hudson, R., 1984, Word Grammar, Oxford: Basil Blackwell.

			Huet, Gérard, 2002, “The Zen Computational Linguistics Toolkit: Lexicon Structures and Morphology Computations Using a Modular Functional Programming Language”, in Tutorial Language Engineering Conference LEC’2002, Hyderabad.

			———, 2006, “Lexicon-directed Segmentation and Tagging of Sanskrit”, in Themes and Tasks in Old and Middle Indo-Aryan Linguistics, ed. Bertil Tikkanen and Heinrich Hettrich, pp. 307-25, Delhi: Motilal Banarsidass.

			———, 2007, “Shallow Syntax Analysis in Sanskrit Guided by Semantic Nets Constraints”, in Proceedings of the 2006 International Workshop on Research Issues in Digital Libraries, ed. Prasenjit Majumdar, Mandar Mitra and Swapan K. Parul, pp. 46-52, Kolkata: ACM Digital Library. doi: http://doi.acm.org/10.1145/1364742.1364750. url: yquem.inria.fr/~huet/PUBLIC/IWRIDL.pdf.

			———, 2009, “Formal Structure of Sanskrit Text: Requirements Analysis for a Mechanical Sanskrit Processor”, in Sanskrit Computational Linguistics, 1 & 2, ed. Gérard Huet, Amba Kulkarni and Peter Scharf, Springer-Verlag pp. 162-99, LNAI 5402.

			———, 2016, “Sanskrit Signs and Pāṇinian Scripts”, in Sanskrit and Computational Linguistics: Proceedings of the “Sanskrit and the IT World” Section of 16th World Sanskrit Conference, ed. Amba Kulkarni, pp. 53-76, New Delhi: D.K. Publishers’ Distributors.

			Huet, Gérard and Pawan Goyal, 2016, “Design and Analysis of a Lean Interface for Sanskrit Corpus Annotation”, Journal of Linguistic Modeling, 4(2): 145-82.

			Huet, Gérard, Amba Kulkarni and Peter Scharf (eds), 2009, Sanskrit Computational Linguistics, 1 & 2, Springer-Verlag, LNAI 5402.

			Hyman, Malcolm D., 2009, “From Paninian Sandhi to Finite State Calculus”, in Sanskrit Computational Linguistics, 1 & 2, ed. Gérard Huet, Amba Kulkarni and Peter Scharf, pp. 253-65, Springer-Verlag, LNAI 5402.

			Iyer, K.A. Subramania, 1969, Bhartr̥hari: A Study of Vākyapadīya in the Light of Ancient Commentaries, Poona: Deccan College.

			——— (tr.), 1971, The Vākyapadīya of Bhartr̥hari: Chapter III, Pt I, Poona: Deccan College.

			Jere, Atmaram Narayan, 2002, Kārikāvalī, Varanasi: Chowkhamba Krishnadas Academy.

			Jha, Gaṅgānātha (tr.), 1933, Śābara Bhāṣya, vol. 1, Baroda: Oriental Institute.

			——— (tr.), 1936, Śābara Bhāṣya, vol. 3, Baroda: Oriental Institute.

			Jha, Girish Nath (ed.), 2010, Sanskrit Computational Linguistics 4, Springer-Verlag LNAI 6465.

			Jha, V.N., 1997, The Vaiyākaraṇabhūṣaṇa of Kauṇḍabhaṭṭa; English Translation; vol. I, Delhi: Sri Satguru Publications.

			Jhalakikar, V.R., 1920, Kāvyaprakāśa of Mammaṭa with the Bālabodhinī, 7th edn, Baroda: Bhandarkar Oriental Research Institute.

			———, 1928, Nyāyakośa, Poona: Bombay Sanskrit and Prakrit Series, 49.

			Joshi, K.R., 1985, Nyāyasiddhāntamuktāvalī, Bhandarkar Oriental Series, 21, Pune: Bhandarkar Oriental Research Institute.

			Joshi, S.D., 1968, Patañjali’s Vyākaraṇa Mahābhāṣya Samarthāhnika (P 2.1.1), ed. with tr. and Explanatory Notes, Pune: Centre of Advanced Study in Sanskrit.

			———, 1981, Patañjali’s Vyākaraṇa Mahābhāṣya Prātipadikārthaśeṣāhnikam (P2.3.46–2.3.71), Pune: Centre of Advanced Study in Sanskrit.

			———, 1986, Patañjali’s Vyākaraṇa Mahābhāṣya Paspaśāhnikam, Pune: Centre of Advanced Study in Sanskrit.

			———, 1990, Patañjali’s Vyākaraṇa-Mahābhāṣya Sthānivadbhāvāhnika: Introduction, Text Translation and Notes, Research Unit Series v. 1, Pune: Bhandarkar Oriental Research Institute.

			———, 1998, The Aṣṭādhyāyī of Pāṇini with Translation and Explanatory Notes, vol. 7, New Delhi: Sahitya Akademi.

			———, 2004, The Aṣṭādhyāyī of Pāṇini with Translation and Explanatory Notes, vol. 11, New Delhi: Sahitya Akademi.

			Joshi, S.D. and J.A.F. Roodbergen, 1975, Patañjali’s Vyākaraṇa Mahābhāṣya Kārakāhnikam (P 1.4.23–1.4.55), Poona: Centre of Advanced Study in Sanskrit.

			Kamboj, J.L., 1986, Semantic Change in Sanskrit, Delhi: Nirman Prakashan.

			Katz, J.J. and J.A. Fodor, 1963, “The Structure of a Semantic Theory”, Language, 39: 170-210.

			King, Tracy H., Richard Crouch, Stefan Riezler, Mary Dalrymple and Ronald Kaplan, 2003, The PARC 700 Dependency Bank.

			Kiparsky, Paul, 2009, “On the Architecture of Panini’s Grammar”, in Sanskrit Computational Linguistics, 1 & 2, ed. Gérard Huet, Amba Kulkarni and Peter Scharf, pp. 33-94, Springer-Verlag LNAI 5402.

			Kiparsky, Paul and J.F. Staal, 1968, “Syntactic and Semantic Relations in Pāṇini”, Foundations of Language, 5: 83-117.

			Krishna, Amrith and Pawan Goyal, 2016, “Generation of Derivative Nouns by Simulating Pāṇini”, in Sanskrit and Computational Linguistics: Proceedings of the “Sanskrit and the IT World” Section of 16th World Sanskrit Conference, ed. Amba Kulkarni, pp. 157-92, New Delhi: D.K. Publishers’ Distributors.

			Krishna, Amrith, Pavankumar Satuluri and Pawan Goyal, 2017, “A Dataset for Sanskrit Word Segmentation”, in Proceedings of the Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature, pp. 105-14, Vancouver: Association for Computational Linguistics.

			Kulkarni, Amba, 2013, “A Deterministic Dependency Parser with Dynamic Programming for Sanskrit”, in Proceedings of the Second International Conference on Dependency Linguistics (DepLing 2013), pp. 157-66, Prague, Charles University in Prague Matfyzpress, url: http://www.aclweb.org/anthology/W13-3718.

			Kulkarni, Amba and Devanand Shukl, 2009, “Sanskrit Morphological Analyser: Some Issues, Festschrift Volume of Bh. Krishnamoorty”, Indian Linguistics, 70.1-4: 169-77.

			Kulkarni, Amba and Gérard Huet (eds), 2009, Sanskrit Computational Linguistics 3, Springer-Verlag LNAI 5406.

			Kulkarni, Amba and Anil Kumar, 2011, “Statistical Constituency Parser for Sanskrit Compounds”, in Proceedings of ICON 2011, Macmillan Advanced Research Series, Delhi: Macmillan.

			Kulkarni, Amba and Anil Kumar, 2013, “Clues from Aṣṭādhyāyī for Compound Type Identification”, in Recent Researches in Sanskrit Computational Linguistics, ed. Malhar Kulkarni and Chaitali Dangarikar, New Delhi: D.K. Printworld.

			Kulkarni, Amba and K.V. Ramakrishnamacharyulu, 2013, “Parsing Sanskrit Texts: Some Relation-specific Issues”, in Recent Researches in Sanskrit Computational Linguistics, ed. Malhar Kulkarni and Chaitali Dangarikar, pp. 191-212, New Delhi: D.K. Printworld.

			Kulkarni, Amba P., Preeti Shukla, Pavankumar Satuluri and Devanand Shukl, 2015, “How Free Is the ‘Free’ Word Order in Sanskrit”, in Sanskrit Syntax, ed. Peter Scharf, pp. 269-304, Sanskrit Library.

			Kulkarni, Amba, Sheetal Pokar and Devanand Shukl, 2010, “Designing a Constraint Based Parser for Sanskrit”, in Fourth International Sanskrit Computational Linguistics Symposium, ed. G.N. Jha, pp. 70-90, Springer-Verlag, LNAI 6465.

			Kulkarni, Malhar, Chaitali Dangarikar, Irawati Kulkarni, Abhishek Nanda and Pushpak Bhattacharyya, 2010, “Introducing Sanskrit Wordnet”, in Principles Construction and Application of Multilingual Wordnets, ed. Pushpak Bhattacharyya, Christiane Felbaum and Piek Vossen, New Delhi: Narosa Publishing House.

			Kulkarni, Malhar and Chaitali Dangarikar, 2013, “Recent Researches in Sanskrit Computational Linguistics”, in Recent Researches in Sanskrit Computational Linguistics, ed. Malhar Kulkarni and Chaitali Dangarikar, New Delhi: D.K. Printworld.

			Kumar, Aravind, 1992, Bhavānanda kr̥t Kārakacakra: Eka Adhyayana, Calcutta: Nirmal Book Agency.

			Kumārasvāmin, 1909, Pratāparūdrīya of Vidyānātha, Bombay Sanskrit and Prakrit Series, 65.

			Kumārila Bhaṭṭa, 1929, Tantravārtika, 97th edn, Poona: Anandasrama Sanskrit Series.

			Kunjunni Raja, K., 1963, Indian Theories of Meaning, Madras: Adayar Library and Research Centre.

			Kuppuswami Shastrigal, M.A., 1908, Adhvara Mīmāṁsā Kutūhalavr̥ttiḥ, Srirangam: Sri Vani Vilas Press.

			Maṅgalārāma, 1995, Saṁskr̥ta Vyākaraṇa kī Dārśanika Mīmāṁsā, Jodhpur: Rajasthani Granthagar.

			Marcus, S., 1967, Algebraic Linguistics: Analytical Models, Mathematics in Science and Engineering, 29, New York: Academic Press.

			Marneffe, M., B. MacCartney and C.D. Manning, 2006, “Generating Typed Dependency Parses from Phrase Structure Parses”, in The Fifth International Conference on Language Resources and Evaluation, LREC 2006, Italy.

			Masson, J. Moussaieff, 1979, “Truth or Falsity in Poetry”, Annals of the Bhandarkar Oriental Research Institute, 60 (1/4): 225-28.

			Matilal, B.K., 1985, Logic, Language and Reality: An Introduction to Indian Philosophical Studies, Delhi: Motilal Banarsidass.

			McDonald, Ryan and Joakim Nivre, 2007, “Characterizing the Errors of Data-Driven Dependency Parsing Models”, in Proceedings of EMNLP-CoNLL, pp. 122-31.

			McDonald, Ryan, Fernando Pereira, Kiril Ribarov and Jan Hajiç, 2005, “Non-projective Dependency Parsing Using Spanning Tree Algorithms”, in Proceedings of HLT/EMNLP, pp. 523-30.

			Mīmāṁsakaḥ, Yudhiṣṭhira, 1990, Mīmāṁsā Śābarabhāṣya, Sonepat: Ramlal Kapoor Trust.

			———, 1993, Mahābhāṣyam, Patañjalimuniviracitam, Sonepat: Ramlal Kapoor Trust.

			Mishra, Sri Narayana, 1985, Kāśikāvr̥ttiḥ along with Commentaries Nyāsa of Jinendrabuddhi and Padamañjarī of Haradattamisra, Varanasi: Ratna Publications.

			Misra, Anand, 2009, “Simulating the Paninian System of Sanskrit Grammar”, in Sanskrit Computational Linguistics Symposium, 1 & 2, ed. Gérard Huet, Amba Kulkarni and Peter Scharf, pp. 127-38, Springer-Verlag LNAI 5402.

			Mittal, Vipul, 2010, “Automatic Sanskrit Segmentizer Using Finite State Transducers”, in Proceedings of the ACL 2010 Student Research Workshop, pp. 85-90, Uppsala Sweden: Association for Computational Linguistics, url: http://www.aclweb.org/anthology/P10-3015.

			Munśī, O.K., E.V.P. Unithiri and N.V.P. Unithiri, 2004, Dhāturūpaprapañca (A Dictionary of All the Forms of All the Roots in Sanskrit), Calicut University Sanskrit Series, pt 2, Calicut: University of Calicut.

			Nair, Sivaja, 2011, “The Knowledge Structure in Amarakośa”, PhD thesis, University of Hyderabad.

			Nair, Sivaja and Amba Kulkarni, 2010, “The Knowledge Structure in Amarakośa”, in Proceedings of the 4th International Sanskrit Computational Linguistics Symposium, ed. G.N. Jha, Springer-Verlag, pp. 173-89, LNAI 6465.

			Nakagawa, Tetsuji, 2007, “Multilingual Dependency Parsing Using Global Features”, in Proceedings of the Joint Conference on EMNLP-CoNLL, pp. 952-56, Prague: Association for Computational Linguistics.

			Natarajan, Abhiram and Eugene Charniak, 2011, “S3-Statistical Sandhi Splitting”, in Proceedings of IJCNLP, pp. 301-08, Chiang Mai Thailand: Asian Federation of Natural Language Processing.

			Nivre, J., 2006, “Constraints on Non-projective Dependency Parsing”, in Proceedings of the Eleventh Conference of the European Chapter of the Association for Computational Linguistics (EACL), pp. 73-80, Trento, Italy.

			Panchal, Sanjeev, (forthcoming), “Modelling Ākāṁkṣā Following Pāṇinian Grammar for Sentential Parsing”, PhD thesis, Hyderabad: University of Hyderabad.

			Panchal, Sanjeev and Amba Kulkarni, 2018, “Yogyatā as an Absence of Non-congruity”, in Proceedings of Computational Sanskrit and Digital Humanities, 17th World Sanskrit Conference, ed. Gérard Huet and Amba Kulkarni, pp. 59-82, New Delhi: D.K. Publishers’ Distributors.

			Pande, Gopal Dutt, 2000, Vaiyākaraṇa Siddhāntakaumudī of Bhattojidikshita (text only), repr. edn, Varanasi: Chowkhamba Vidyabhavan.

			———, 2004, Aṣṭādhyāyī of Pāṇini Elaborated by M.M. Panditraj Dr. Gopal Shastri, Varanasi: Chowkhamba Surabharati Prakashan.

			———, 2012, Vaiyākaraṇa Siddhāntakaumudī of Bhattojidikshita Containing Bālamanoramā of Śrī Vāsudevadīkshita, repr. edn, Varanasi: Chowkhamba Surabharati Prakashan.

			Pande, Gopaladatta, 2012, Vaiyyākaraṇasiddhāntakaumudī, Vārāṇasī: Chowkhambā Surabhāratī Prakāśan.

			Pataskar, Bhagyalata A., 2006, “Semantic Analysis of the Technical Terms in the ‘Aṣṭādhyāyī’, meaning ‘Adjective’”, Annals of Bhandarkar Oriental Research Institute, 87: 59-70.

			Patel, Dhaval and Shivakumari Katuri, 2016, “Prakriyāpradarśinī: An Open Source Subanta Generator”, in Sanskrit and Computational Linguistics: Proceedings of the “Sanskrit and the IT World” Section of 16th World Sanskrit Conference, ed. Amba Kulkarni, pp. 193-220, New Delhi: D.K. Publishers’ Distributors.

			Patnaik, Tandra, 1994, Śabda: A Study of Bhartr̥hari’s Philosophy of Language, New Delhi: D.K. Printworld.

			Prasad, K.S., 2002, The Philosophy of Language in Classical Indian Tradition, New Delhi: Decent Books.

			Ramakrishnamacharyulu, K.V., 2009, “Annotating Sanskrit Texts Based on Śābdabodha Systems”, in Proceedings of Third International Sanskrit Computational Linguistics Symposium, ed. Amba Kulkarni and Gérard Huet, pp. 26-39, Hyderabad: Springer-Verlag LNAI 5406.

			Ramanujatatacharya, N.S., 2005, Śābdabodha Mīmāṁsā, Pondicherry: Institut Français de Pondichéry.

			Rāmapriya, Bhā. Va. and V. Saumyanārāyaṇa, 2001, “Saṅgaṇakayantre Nyāyaśāstrīyaśābdabodhaḥ”, Journal of Foundation Research, VI.1-2: 61-68.

			Reddy, Vikas, Amrith Krishna, Vishnu Dutt Sharma, Prateek Gupta, M.R. Vineeth and Pawan Goyal, 2018, “Building a Word Segmenter for Sanskrit Overnight”, in LREC, pp. 1666-1671, Miyazaki, Japan: European Language Resource Association.

			Resnik, Phillip, 1993, “Semantic Classes and Syntactic Ambiguity”, in Proceedings of ARPA Workshop on Human Language Technology, pp. 278-83, Princeton, NJ: Association for Computational Linguistics.

			Sanfillip, A. et al., 1996, Subcategorization Standards: Report of the EAGLES Lexicon/Syntax Group, SHARP Laboratories of Europe.

			Sangal, Rajeev, Vineet Chaitanya and Amba Kulkarni, 2000, “Anusaaraka: Overcoming the Language Barrier in India”, in Anuvad, ed. Rukmini Bhaya Nair, pp. 224-50, New Delhi: Sage Publishers.

			Sanka, Usharani, 2015, “A Study of Kāraka-demand of Some Dhātus, Based on Meaning, Following Śābdabodha for Machine Translation”, PhD thesis, Rashtriya Sanskrit Vidyapeetha, Tirupati.

			Sastri, Gangadhara, 1903, Tantravārtikam, Benares: Chowkamba Sanskrit Book Depot.

			Sastry, Vempaty Kutumba, 2002, Saṅkṣepa Rāmāyaṇam, Delhi: Rashtriya Sanskrit Sansthan.

			Satuluri, Pavankumar, 2016, “Sanskrit Compound Generation: With a Focus on the Order of Operations”, PhD thesis, University of Hyderabad.

			Scharf, Peter, 1990, “The Denotation of Generic Terms in Ancient Indian Philosophy: Grammar, Nyāya, and Mīmāṁsā”, PhD thesis, University of Pennsylvania.

			———, 2009a, “Levels in Pāṇini’s Aṣṭādyāyī”, in Proceedings of Third International Symposium on Sanskrit Computational Linguistics, ed. Amba Kulkarni and Gérard Huet, pp. 66-77, LNAI 5406, Hyderabad: Springer.

			———, 2009b, Madhaviyadhatuvrittisaidhantikanukramani Providence, The Sanskrit Library.

			———, 2016, “An XML Formalisation of the Aṣṭādhyāyī”, in Sanskrit and Computational Linguistics: Proceedings of the “Sanskrit and the IT World” Section of 16th World Sanskrit Conference, ed. Amba Kulkarni, pp. 77-102, New Delhi: D.K. Publishers.

			Scharf, Peter, Anuja Ajotikar, Sampada Savardekar, and Pawan Goyal, 2015, “Distinctive Features of Poetic Syntax Preliminary Results”, Sanskrit Syntax, ed. Peter Scharf, pp. 305-24, Sanskrit Library, USA.

			Scharf, Peter, Pawan Goyal, Anuja Ajotikar and Tanuja Ajotikar, 2015, “Voice, Preverb and Transitivity Restrictions in Sanskrit Verb Use”, in Sanskrit Syntax, ed. Peter Scharf, pp. 157-202, Sanskrit Library, USA.

			Shailaja, N., 2014, “Comparison of Pāṇinian Dhātuvr̥ttis”, PhD thesis, University of Hyderabad.

			Shailaja, N. and Amba Kulkarni, 2013, “Comparison of Pāṇinīya Dhātuvr̥ttis”, in Recent Researches in Computational Linguistics: Proceedings of the 5th International Sanskrit Computational Linguistics Symposium, ed. Malhar Kulkarni and Chaitali Dangarikar, pp. 103-14, New Delhi: D.K. Printworld.

			Shailaja, N. and Amba Kulkarni, 2019, “Pāṇinīyadhātuvr̥ttīnām Tulanātamaka-madhyanam”, Dhīmahi, Research Journal of Chinmaya International Foundation, vol. X: 22-38.

			Sharma, Pandit Shivadatta, 2007, Vyākaraṇamahābhāṣyam, Delhi: Chaukhamba Sanskrit Pratishtan.

			Sharma, Rama Nath, 1987, The Aṣṭādhyāyī of Pāṇini: English Translation of Adhyāyas Two and Three with Sanskrit Text, Delhi: Munshiram Manoharlal.

			———, 2003, The Aṣṭādhyāyī of Pāṇini: English Translation of Adhyāyas Seven and Eight with Sanskrit Text, Delhi: Munshiram Manoharlal.

			Sharma, Raghunath, 1974, Vākyapadīyam, Part III with Commentary Prakāśa by Helaraja and Ambakartri, Varanasi: Varanaseya Sanskrit Visvavidyalaya.

			Sharmā, Ramaṇakumāra, 2001, Śabdaśaktivimarśa, Delhi: Vidyanidhi Prakashan.

			Shastri, Gaurinath, 1959, The Philosophy of Word and Meaning, Calcutta: Sanskrit College.

			Shastri, Swami Dwarikadas and Pt. Kalika Prasad Shukla, 1965, Kāśikāvr̥ttiḥ with the Nyāsa Commentary and Padamañjarī, Varanasi: Chaukhamba Sanskrit Pratishthan.

			Shukla, Preeti, Amba Kulkarni and Devanand Shukl, 2013, “Geeta: Gold Standard Annotated Data, Analysis and Its Application”, in Proceedings of ICON 2013, the 10th International Conference on NLP, Macmillon Advanced Research Series, pp. 134-44, Delhi: Macmillon.

			Shukla, Rajaram, 2015, Viśvanātha-pañcānanakr̥ta Nyāyasiddhāntamuktāvalī dinakarī sahita, Shimla: Indian Institute of Advanced Study.

			———, 2017, Viśvanātha-pañcānanakr̥ta Nyāyasiddhāntamuktāvalī dinakarī sahitā (anumānakhaṇḍamārabhya), Varanasi: Sampoornanda Sanskrit Vishwavidyalaya,

			Sohoni, Samir J. and Malhar A. Kulkarni, 2018, “A Functional Core for the Computational Aṣṭādhyāyī”, in Computational Sanskrit and Digital Humanities, 17th World Sanskrit Conference Proceedings, ed. Gérard Huet and Amba Kulkarni, pp. 1-30, New Delhi: D.K. Publishers’ Distributors.

			Somayājulu, K.V., 2002, Vākyapadīyasthasādhanasamuddeśavimarśaḥ: A Critical Study on the Sādhanasamuddeśa of Vākyapadīya, Delhi: Amara Grantha Publications.

			Speijer, J.S., 1886, Sanskrit Syntax, repr. 2009, Delhi: Motilal Banarsidass.

			Staal, J. Fritz, 1967, Word Order in Sanskrit and Universal Grammar, Foundations of Language Supplementary Series v. 5, Dordrecht: D. Reidel.

			Staal, J.F., 1988, Universals: Studies in Indian Logic and Linguistics, Chicago, IL: The University of Chicago Press.

			Subbanna, Sridhar and Shrinivasa Varakhedi, 2009, “Computational Structure of the Aṣṭādhyāyī and Conflict Resolution Techniques”, in Sanskrit Computational Linguistics, 3rd International Symposium, Hyderabad, Proceedings, ed. Amba Kulkarni and Gérard Huet, pp. 56-65, Springer-Verlag LNAI 5406.

			———, 2010, “Asiddhatva Principle in Computational Model of Aṣṭādhyāyī”, in Sanskrit Computational Linguistics, 4th International Symposium, New Delhi, India, December 2010, Proceedings, ed. Girish Nath Jha, pp. 231-38, LNAI 6465, Berlin–Heidelberg: Springer-Verlag.

			Subbarao, Veluri, 1969, The Philosophy of a Sentence and Its Parts, Delhi: Munshiram Manoharlal.

			Subrahmanyam, Korada, 2001, Four Vr̥ttis in Pāṇini, Hyderabad: Korada Subrahmanyam.

			———, 2012, Mahāvākyavicāraḥ, Bhāgyanagaram: Śrīlakṣmaṇarāya Bhavyasmr̥ti Granthamālā.

			Susarla, Sarada, Tilak M. Rao and Sai Susarla, 2018, “PAIAS: Pāṇini Aṣṭādhyāyī Interpreter as a Service”, in Computational Sanskrit and Digital Humanities, 17th World Sanskrit Conference Proceedings, ed. Gérard Huet and Amba Kulkarni, pp. 31-58, New Delhi: D.K. Publishers’ Distributors.

			Tesnière, Lucie (ed.), 1959, Éléments de Syntaxe Structurale, Paris: Librairie C. Klincksieck.

			Tripāṭhī, Dāmodararāma, 2002a, Vākyatattvavimarśaḥ, Delhi: S.S. Publishers.

			———, 2002b, Ātmatattvavimarśaḥ, Delhi: S.S. Publishers.

			Tripāṭhī, Rāmasureśa, 1972, Saṁskr̥ta Vyākaraṇa Darśana, New Delhi: Rajakamal Prakashan.

			Tubb, Gary A. and Emery R. Boose, 2007, Scholastic Sanskrit: A Handbook for Students, New York: The American Institute of Buddhist Studies at Columbia University.

			Varmā, Satyakāma, 1964, Bhāṣātattva aura Vākyapadīya, New Delhi: Bharatiya Prakashan.

			Vijayapāla, Vidyavaridhi, 2001, Kāśikā, Sonepat: Ramlal Kapoor Trust.

			Wilks, Yorick, 1975, “A Preferential, Pattern-seeking, Semantics for Natural Language Interface”, Artificial Intelligence, 6: 53-74.

			Yamada, H. and Y. Matsumoto, 2003, “Statistical Dependency Analysis with Support Vector Machines”, in Proceedings of IWPT, pp. 195-206, Nancy, France: Association for Computational Linguistics. https://www.cs.cmu.edu/usigparse/previousmeetings/iwpt2003/index.html.

		

	
		
			Index

		

		
			A

			abhidhā 13, 18, 40, 70, 71, 72, 73

			abhihita 43, 105

			Abhihitānvayavāda 31, 32

			ablative 45, 78

			absolutive 57, 65

			accusative 18, 25, 35, 45, 50, 52, 70

			Acyclic 99, 103

			adhikaraṇa 44, 49, 50, 85, 105, 107,
 108, 111

			adjective 5, 25, 38, 39, 41, 45, 46,
 59, 61, 65, 71, 78, 82, 85, 87, 88,
 89, 90, 91, 109, 115

			agent 13, 14

			ajahad-lakṣaṇā 21, 73

			ākāṅkṣā xiii, xxii, 24, 25, 32, 40, 41,
 57, 68, 71, 74, 86, 88, 90, 103,
 106, 108, 111, 136

			akhaṇḍa-pakṣa 30, 31

			ā̄laṁkārikas 30

			Amarakośa 6, 87, 106

			anabihita 105

			Anusaaraka 137

			anvayamukhī 38

			anvaya-vyatireka 32

			anvitābhidhānavāda 31, 32

			apādāna 44, 67, 69, 78, 85, 86, 104

			argument-sharing 54

			ārthī-bhāvanā 14

			ārthī-pakṣa 135

			aruṇādhikaraṇa 85

			asamartha-samāsa 102

			Aṣṭādhyāyī viii, 3, 6, 15, 51, 52, 53,
 79, 81, 83, 87, 105

			avadhāraṇa 46

			āvāpaudvāpa 32

			avayava–avayavī-bhāva 49, 51, 87, 106

			B

			Bahuvrīhi 82

			barhirnyāya 72

			beneﬁciary 11

			Bhartr̥hari 17, 53, 80, 135

			bhāvanā 13, 14, 20

			bhramātmaka-jñāna 26

			bipartite graph 110

			bi-transitive 41

			C

			canonical word order 93, 94, 128, 137

			case suffix 5, 42, 44, 45, 49, 52, 86,
 105, 119

			chief qualificand 14, 34, 36, 135

			chunker xi, 101

			CLIPS xi, xii

			Confusion Matrix 142

			congruent 73

			congruity 24, 28, 71, 76, 77, 86, 87, 91

			congruous 28, 32, 35, 73, 76, 77

			Congruous 86

			constituency

			analyses 7

			parse 8

			parser 7, 11

			structure 7, 8, 10

			tree 9, 10, 11

			constraint solver 112, 113, 128

			coreferentiality 52

			CPG ix

			C-selection 69

			Cyc 70

			D

			DAG 99, 122, 123

			daṇḍānvaya 38, 39, 89

			data-driven 101

			deep-learning 1

			DeitY xii

			dependency

			analysis 11

			grammar 10, 13, 41

			graph 55, 58, 59, 101, 127

			parse 95, 96, 97, 98, 99, 128

			parser xiv, 12, 93, 101

			parsing xiv, 93, 101, 110

			relation 10, 58, 93

			structure 7, 10, 11, 55, 58, 99, 100

			tree 10, 11, 55, 97, 121

			Depth-First-Traversal 116

			derivational suffix 44, 98, 104, 105

			deterministic parsing 114

			DFT 116

			dhātupāṭha 6, 42

			Dhātuvr̥ttis 42

			dravya 79, 80, 81, 82, 83, 86, 87, 88,
 91, 104, 106

			dvikarmaka 104

			dvirepha 148

			dynamic programming 110, 114, 117,
 121, 128

			E

			edge-centric xii, 110, 114, 121, 122,
 128

			exegesists 13

			expectancy ix, 13, 24, 25, 26, 32, 35,
 41, 42, 43, 68, 71, 74, 87, 88, 90,
 98, 99, 102, 103, 104, 106, 107,
 109, 111, 115

			extended meaning 20, 21, 22, 71, 73,
 76

			extralinguistic 5, 49, 51, 91, 96, 135

			F

			free word order 10, 36

			G

			Gaṅgeśopādhyāya 28

			gauṇī 18, 19, 21

			Gautama 145, 147

			generative grammar viii

			genitive 44, 49, 51, 59, 61, 68, 78,
 86, 87, 88, 90

			global

			compatibility 116, 119, 123, 126

			constraint 103, 109, 110, 111, 128

			grammarians vii, viii, ix, xiv, 13, 50,
 51, 96, 97

			graph 10, 55, 58, 59, 68, 101, 102,
 103, 106, 107, 109, 110, 111, 113,
 114, 116, 117, 127, 128

			guṇa-vacana 80, 81, 82, 83, 84, 86,
 91, 104, 106, 136

			H

			Haskell 3

			hetu 106

			homonymous 15, 29

			HPSG 41

			hypernymy 82

			hyponymy 82

			I

			implied meaning 19

			imposed property 68, 78, 83

			inconceivable 28

			incongruent 94

			incongruity 28, 104

			incongruous 103

			inconsistent 28

			indeclinables 42, 46, 81, 98, 105

			Indo-Aryan xiv

			inflectional suffix 43

			instrument 43, 47, 48, 49, 75, 77, 86

			integer programming 11

			intentional implication 19

			J

			jahad–ajahad-lakṣaṇā 19, 21, 73

			Jahad-lakṣaṇā 21

			Jaimini 24, 85, 147

			janya–janaka-bhāva 49, 87

			jāti-vācaka 84

			JSON 3

			K

			kāraka viii, 5, 20, 25, 26, 42, 43,
 44, 45, 47, 50, 51, 61, 62, 68, 69,
 77, 85, 86, 87, 88, 91, 96, 105,
 108, 110, 111

			kāraka chart 68

			karaṇa(m) 5, 34, 43, 44, 49, 75, 77,
 85, 86, 87, 104

			karma(n) 11, 13, 14, 20, 25, 26, 35,
 38, 39, 43, 44, 50, 51, 52, 62,
 63, 64, 65, 69, 71, 74, 85, 96,
 99, 104, 105, 107, 108, 127

			Karmapravacanīya 45

			karma-samānādhikaraṇa 104

			karmatva 50

			kartr̥(ā) 20, 26, 35, 38, 39, 43, 44, 47,
 48, 49, 50, 51, 52, 53, 54, 61, 62,
 63, 64, 65, 69, 71, 74, 85, 96, 99,
 100, 102, 103, 105, 107, 108, 109,
 115, 119

			kartr̥samānādhikaraṇa 104, 109, 115

			kartr̥tva 49, 53

			katham-bhūtinī 39

			Kātyāyana 81

			Kauṇḍa Bhaṭṭa 135

			khaṇḍa-anvaya 39

			khaṇḍa-pakṣa 30, 31

			kriyā-vacana 83

			kriyāviśeṣaṇa(m) 45, 46, 65, 106,
 154, 156

			Kumārila Bhaṭṭa 23, 28, 31

			L

			lakṣaṇā 13, 18, 19, 70, 71, 72, 73

			lakṣaṇāropitā 72

			local constraint 103, 108, 111, 113,
 114, 128

			locative 102, 119

			logician ix, 13, 34, 36, 96

			M

			machine-learning 1, 7, 70, 136, 137

			machine translation 1, 11

			Mahābhāṣya xiv, 33, 79, 80, 87, 146

			Mammaṭa 22

			matrix 111, 113

			metaphoric 70, 72, 75, 76, 88, 90

			Mīmāṁsā xiv, 31, 32, 34, 72, 135

			Mīmāṁsaka 13, 20, 23, 28, 30, 31,
 72, 98, 135

			minimalism 101, 137

			MINION 112

			minipar 101, 137

			modiﬁer–modiﬁed 34, 36, 45

			morpheme vii, 18, 34, 35, 36, 49,
 51, 76, 90, 96, 97, 102, 108, 111

			morphological xi, xii, 38, 78, 81, 101,
 102, 103, 106, 109, 111, 113, 114,
 116, 126, 127

			morphology xii, 78

			mukhyārtha 72

			mukhya-viśeṣya 10, 14, 36, 96, 104

			Mukula Bhaṭṭa 148

			mutual congruity 13

			mutual expectancy 24, 25, 26, 35, 68,
 74, 75, 76, 83, 88, 90

			N

			Nāgeśa 30, 80, 135, 149

			Naiyāyika ix, 13, 18, 23, 25, 27,
 29, 30, 34, 35, 50, 75, 76, 135

			Natural Implication 20

			Navya-Naiyāyika 13

			Navya-Nyāya 13

			neo-logicians 13

			n-gram 7

			nirākāṅkṣā 74

			nirdhāraṇa 45

			nirūḍha-lakṣaṇā 19, 20

			niyata 25

			niyatākāṅkṣā 25

			NLP viii, ix, 3, 11

			node-centric 110, 121, 128

			nominal 43, 44, 86

			suffix 18, 35, 43

			nominative 44, 49, 52, 70

			non-congruity 87, 91, 136

			non-congruous 90

			non-determinism 4, 5

			non-deterministic 4

			non-ﬁnite 43, 46, 54, 67

			non-kāraka 105, 106

			non-planar 59, 68

			non-projective 58

			non-projectivity 55, 58, 68, 90, 128,
 135

			non-sensical 94, 104

			noun lakṣaṇa chart 68

			Nyāya xiii, 34, 59, 72, 135

			Nyāyakośa 27, 76

			Nyāyasiddhāntamuktāvalī 25, 26, 34,
 42

			Nyāyasūtra 145

			O

			object 25

			OCaml xii

			ontological constraint 91

			ontology 6, 69, 80, 86

			Optimality Theory 7

			P

			Padaśāstra 135, 136

			Pāṇini 2, 3, 4, 5, 6, 13, 47, 49, 50,
 51, 52, 78, 79, 80, 81, 86, 104,
 105, 106, 135

			parā–aparā 83, 106

			parājāti–aparājāti 82

			Paramalaghumañjūṣā 27, 149

			parasparākāṅkṣā 25

			parser xiv, 7, 11, 12, 14, 32, 41, 51,
 52, 55, 69, 70, 71, 89, 90, 93,
 94, 100, 101, 102, 110, 113, 116,
 127, 128

			part–whole 49, 87, 106

			passive 43, 44

			Patañjali xiv, 33, 78, 79, 80, 81, 87

			planar graph 58

			planarity ix, 54, 58, 59, 68

			POS xi, 7, 8, 101

			Prabhākara 31

			prakriyā-pakṣa 135

			prākr̥ta-dhvani 17

			pramātmaka-jñāna 26

			prayojana(m) 77, 85, 106

			Prayojanavatī-lakṣaṇa 20

			precedence 53, 55, 68

			predicative adjective 46, 59, 109, 115

			primary meaning 18, 20, 21, 29, 70,
 71, 72, 73, 75, 76, 90, 136

			projective 115

			projectivity 55, 57, 58

			constraint 58

			proximity 5, 13, 24, 32, 35, 42, 68

			Q

			qualiﬁcand 96, 99

			qualiﬁed 86, 96

			qualiﬁer 79, 81, 82, 96

			qualitative implication 19

			R

			rhetorician 22, 30, 72, 137

			rūḍha 18

			S

			Śābara-Bhāṣya xiv, 85

			śābdabodha ix, xii, 13, 14, 15, 16,
 18, 23, 24, 26, 33, 34, 35, 36,
 39, 40, 52, 71, 90, 95, 97, 128

			śabdajagat 51

			śabdakarma 104

			Śabdakhaṇḍa 28, 34

			śabda-śakti ix, 70

			sakarmaka 42, 104

			śakti 15, 18, 42, 70

			śaktigraha 42

			samānādhikaraṇa 45, 78, 84, 87, 102

			sāmānādhikaraṇya 45, 46, 52, 78, 85

			sāmānya–viśeṣa 106

			samāsa viii, 15, 18, 43, 81, 82

			samasta-pada 18, 19, 83, 84

			sambaddhārtha 33

			sambodhana 68, 106

			saṁgatārtham 33

			sampradāna 11, 13, 14, 44, 77, 85,
 86, 104

			samprekṣitārtha 33

			saṁsr̥ṣṭārtha 33

			sandhi 4, 5, 6, 7, 15, 94

			saṅgatārtha 33

			sannidhi ix, xiii, xxiii, 24, 26, 27,
 32, 40, 41, 54, 57, 59, 61, 62, 65,
 67, 68, 90, 103, 109, 128, 136

			saptadaśāratnī 72

			sāropā 19, 21, 22

			sarvanāma 81, 82, 83

			ṣaṣṭhī 49, 78, 86

			secondary meaning 20, 28, 29, 72,
 73, 77, 91

			segmentation 5, 6, 7, 12, 38, 93, 94,
 128

			segmenter 6, 94, 126

			semantic 47, 49, 51, 68, 69, 74, 78,
 83, 86, 87, 135

			constraint 69

			semantico-syntactic 83

			seq2seq 7

			shallow parser 12

			signiﬁcation 13

			signiﬁcative xiii, 70, 90

			signiﬁé 16, 17

			S-selection 69

			subcategorization 12, 41, 68, 69, 70

			subordinate 51, 54, 55, 83

			substratum 80

			śuddhā-lakṣaṇa 21

			suggestive meaning 22, 23, 73

			sva–svāmī-bhāva 49, 87

			syntactic 41, 69, 70, 78, 79, 87, 91

			syntactico–semantic 51

			syntax 51, 135

			T

			tādarthya 77, 106

			taddhita 43

			taddhitānta 18, 19, 81, 82, 83, 84

			TAG 41

			Tarkasaṁgraha 18, 26, 27, 76

			tātparya 24, 28, 29, 30, 40, 136

			tatpuruṣa 10

			Tattvacintāmaṇi 27

			TDIL xii

			Tesniére 41

			thematic

			relation 47, 50

			role 47, 49

			transition-based 101, 110

			Type-1 error 77

			Type-2 error 77

			U

			Udyota 80

			unidirectional expectancy 87

			unilateral expectancy 25, 68, 90

			upādhi 68, 78, 83, 84

			upamāna 42

			upapada 44, 105

			upasarjana 83

			utthāpya ākāṅkṣā 25, 57, 68, 90

			utthita ākāṅkṣā 25, 57, 90

			V

			vaikharī 17

			vaikr̥ta-dhvani 17

			Vaiśeṣika 6, 69, 79, 80, 86

			Vaiyākaraṇa ix, 13, 17, 18, 27, 28, 30,
 34, 36, 71, 75, 96, 99, 135

			vākyajam 19

			Vākya-karma 104

			Vākyārthamātr̥kāvr̥tti 27, 76

			Vākyaśāstra 31, 136

			vākya-sphoṭa 31

			valency 41

			Vedic 19, 29

			verbal

			cognition ix, xi, xii, 12, 13, 14,
 18, 23, 26, 27, 28, 29, 30, 33,
 34, 102, 128

			suffix 14, 17, 20, 35, 43, 44, 45,
 46, 52, 53, 98, 99, 102, 105

			verb lakṣaṇa chart 68

			vertex-centric 114, 128

			vibhakti viii, 33, 44, 45, 46, 50, 53,
 104, 105, 106

			vidheya viśeṣaṇa 46

			viśeṣaṇa 10, 39, 45, 46, 61, 65, 68,
 74, 77, 78, 79, 80, 82, 83, 84, 85,
 87, 88, 91, 105, 109

			viśeṣya 10, 36, 39, 77, 78, 79, 83,
 84, 85, 87, 88, 91, 96

			viśeṣya–viśeṣaṇa-bhāva 77, 78, 79, 83,
 88

			vivakṣā viii

			vocative 68

			vyākaraṇa xiii, 34, 42, 52, 59, 61, 91,
 135

			vyaṅgyārtha 22, 30, 73, 137

			vyañjanā 13, 18, 22, 40, 70, 73

			W

			weakly non-projective 58

			weak non-projectivity 55, 58, 68, 90

			well-nestedness 55

			wordNet 6, 70, 87, 106

			word-order 85

			X

			XML 3

			Y

			Yaugika 18

			Yaugikarūḍha 19

			yogarūḍha 19, 20

			yogyatā xiii, 13, 24, 27, 28, 32, 40,
 41, 49, 68, 69, 70, 71, 74, 75, 76,
 77, 88, 89, 90, 103, 106, 107, 111,
 128, 136

		

	
		
		

		
			
				[image:]
			

		

	OEBPS/image/15.jpg
adhikaranam| kartysamanadhikaranam) karty

sambandhah sasthi

audarikasya 2

[— v\
sarvatra audarikasya abhyavaharyam eva visayah asti|

fig. 3.7: Dislocation of a genitive

OEBPS/image/23.jpg
karty (kartrsamanadhikaranam | samanakalah \ karman _piirvakalah

tan samiksya sah kaunteyah ... bandhun ... abravit

fig. 3.15: Modified analysis of Bhagavadgtta 1.27

OEBPS/image/25.jpg
—~——

Srutavan yogam ... kysnat ... kathayatah

fig. 3.17: Analysis of Bhagavadgtta XVIIL75

OEBPS/image/33.jpg
karma (f)\ karta (b) adhikarana (i) \karta (c) \ adhikarana (j)

<D CEPDICPENED

&>
adhikarana (i) adhikarana (j) karma (e)
COEENED <
karma () karma (h)
@ W

fig. 4.8: Seven possible solutions of sentence (3)

adhikarana (j)

OEBPS/image/4.jpg
fig. 1.3: Dependency tree of a Sanskrit sentence: raja vipraya gam dadati

OEBPS/image/41.jpg

OEBPS/image/Sanskrit_parsing_ebook.jpg
0

%900 978-81-246-1078-7
mism
s >
[Tt 5li758 1241510757

02 20a a0s a0n als als als s a0n als aOs als s a0s als als af)

o O ©,0 ©,0 O0 O,0 0,0 O,0 O,0 O,0 OO0 O,0 0,0 O,0 0,0 O,C O.C o°o

g0 wQv wQ» (v wlp Qv wlp el Qv v wOp Qv wOp Wl Qp wv QP €O

OEBPS/image/21.jpg
karman

dharmasya 3

visesanam

\ \

asraddadhanah purusah dharmasya ... nivartante |

fig. 3.13: Analysis of BhagavadgTta IX.3

OEBPS/image/2.jpg
NI:/ S\VP
D:zt/ I£ ‘;/ \‘P\A PP,

RN

| The | |[king| [gives] Det N Prep NP

N

[a |[cow || to | Det III
| a | |brahmana

fig. 1.1: Constituency tree of an English sentence “The king gives a cow to
a brahmana.”

OEBPS/image/39.png

OEBPS/image/17.jpg
kartr kartrsamanadhikaranam

manda-autsukyah 2

sambandah

A
nagara-gamanam 4 _ prati 5

v /SR N

aham manda-autsukyah asmi nagara-gamanam prati |

fig. 3.9: Dislocation of an argument

OEBPS/image/35.jpg
sisATeue Teordojoydiow e Jo uondd[AS (OT'F 3l

_w 7
v < % 9
v _ S
£ _ ; S :
€ TPUeUpUEquesEes 7 ‘T _ v
z v _
¢ z £ £
1 _ z
7 =

T

TSEFI{UNdEUfEUEdeSWeseweqp 7 ‘1T (e} {WNAJeseun 7 TNUEqgF {WNAFI5ENp 7 £ {nqETErIwRrARES 7

L i E ' kil T

$99.1 paJa)y Z6Z 7 opun 7
08897 J0 955 = suolIn|os paJajjy |B10]

sasied 933|dwo) jo Auewwns

OEBPS/image/8.jpg
N
N

N

ekatva

(sankhya)

rama
(masculine)

samavaya

ﬁakatd

vyapara

anukiilatoa

uttara-desa
samyogah
(phala)

(asrayata .-

karmatva :
nirﬁpitattvai
vana
(neuter)

_ '
%ama Z)tlyﬂ/ .

ekatva :
(sankhya) ‘

vartamana

(kalah)

adheyata

/

ekatva
(sankhya)

fig. 2.3: Logician’s verbal import

OEBPS/image/29.jpg
paripapyccha (8)

karma

naradam (7)

visesanam \ viSesanam

viSesanam
tapas-svadhyaya-niratam (3) muni-pungavam (6)
nirdharanam

vag-vidam (4)

fig. 4.4: Dependency parse of statement (1) above

karta

viSesanam

OEBPS/image/36.jpg
UOne[RI B JO UONID[AS ([T 31

S$334) paJa)u b+ 7~ opun
0889Z 10 955 = SuUOIIN|OS paia]|y |Bl0]

sasied 933|dwo) jo Aiewwinsg

OEBPS/image/40.png

OEBPS/image/10.jpg
piirvakalah

o) Gt '

v v v v v
| ramah | | salam | | dugdham | | gacchati | | pitva |

fig. 3.2: Projection for sentence 3.2.1 (h)

OEBPS/image/38.jpg
ydeid Louspuada g1y 51

S0S = 350D ‘95§ 40 8 :®sied

Jeypuequesiyjses

weueloAeidwejidonwes weuefoAeidweyponwes\ weuefoAeidwejponwes

weuefohesd\ weleieyiype

OEBPS/image/20.jpg
karanamkarty “_piirvakalah

visesanam
lokan 9

viSesanam

v

—~ ¥ \s—k

L IR
yabhih vibhitibhih lokan iman tvam ovyapya tisthasi |
fig. 3.12: Analysis of Bhagavadgita X.16

OEBPS/image/19.jpg
adhikaranam| karty “\ ptirvakalah

karman

visesanam

I e e

tatra candramasam jyotih yogl prapya nivartate |

fig. 3.11: Analysis of Bhagavadgita VII1.25

OEBPS/image/6.jpg
A B
(Word Symbol) (Meaning)

v

. :
(Word Sound) (Thing Meant)

fig. 2.1: Kunjunni Raja’s word-meaning rectangle

OEBPS/image/27.jpg
vyapara

anukilatva

adheyata

J
J '
g I

niriipakah

uttara-desa i - '
sarityogah WAl Ek.atm, \
(phala) (kalah) (sankhya)
adheyata wvﬁyﬂi
asrayal . ﬁs’niyah
i) : @ | arty)
abheda ; abheda
vana rama
(neuter) (masculine)
samavaya samavaya
ekatva ekatva
(sankhya)| | (sankhya)

fig. 4.2: Grammarians’ verbal import

OEBPS/image/12.jpg
AN NN

Svetah dhavati asvah asvah dhavati Svetah
(b) (e)
fig. 3.4: Planar dependency graph for sentences (b) and (e)

OEBPS/image/14.jpg
kartr '\ kartrsamanadhikaranam

/_\
tayoh baddhayoh kim-nimittah ayam moksah asti|

fig. 3.6: Dislocation of a genitive

OEBPS/image/31.jpg
karta (d)

fig. 4.6: Possible relations; graph G,

OEBPS/image/32.jpg
fig. 4.7: Adjacency and possible paths; graph G,

OEBPS/image/3.jpg
BS6

% E
L
/
%
. T6
ST 00 LN

pravara) [mukuta| |mani| [marici| [mafijart] | caya| [carcita| [caranal [yugalam|

fig. 1.2: Constituency tree of a Sanskrit compound

OEBPS/image/9788124609880_f.jpg
Sanskrit Parsing

Based on the Theories
of Sabdabodha

tada (6)

visesanam abhedah

Amba Kulkarni

OEBPS/image/16.jpg
karty \sambandhah \ kartrsamanadhikaranam

samsara-bhavah 4 @ hrdaya-marma-bhidah 3

viSesanam

[T\

ete hi hrdaya-marma-bhidah sarisara-bhavah bhavanti |

fig. 3.8: Dislocation of a viSesana

OEBPS/image/42.jpg
Irrelevant items retrieved
Relevant items and retrieved
Relevant items but not retrieved

fig. A1.1: Precision and recall

OEBPS/image/24.jpg
ptrvakalah | kriyavisesanam\karty

karman

ST W

sva-janam katham hatva sukhinah syama |

fig. 3.16: Analysis of Bhagavadgita 1.37

OEBPS/image/1.jpg
1X

PRINTWORLD
Publishers of Indian Traditions

INDIAN INSTITUTE OF ADVANCED STUDY
Shimla

OEBPS/image/18.jpg
karman|karty\ karmasamanadhikaranam

suduskaram 14

tasya aharin nigraharin manye vayoh iva suduskaram |

fig. 3.10: Analysis of Bhagavadgita V1.34

OEBPS/image/34.jpg
suonnyos jo Aefdstp Joedwo)) g% 51

Ao 6

ol
Ao e

53311 paJa)y 9SS 7 opun

0889Z Jo 955 = sU0IIN|Os pads]|y |210]

sasied a33jdwo) jo Aiewwns

OEBPS/image/22.jpg
kartysamanadhikaranam /karty |pirvakalah samanakalal™ karman

visesanam

I y N 3

tan samiksya sah kaunteyah ... bandhin ... abravit

fig. 3.14: Analysis of Bhagavadgita 1.27

OEBPS/image/9.jpg
kartr "

visesanam

v v v
[Svetah| [asvah | |dhavati]

(@)

visesanam

« v v
| asval | [Svetah| [dhavati]
(c)
¥ karty
@ visesanam
v v v
| asvah | |dhavati] | Svetal |

()

kartr

Tvisesanam

v v v
| Svetah | [dhavati] [asvah |

(b)

kartr
yvisesanam .,

v v s
[dhavati] [Svetah] [asvah]

(d)

! karty
-@. visesanam

: i 3
[dhavati] [asvah | [Svetah]

()

fig. 3.1: Projections for sentences 3.2.1(a)-(f)

OEBPS/image/7.jpg
vyapara

nirfipakah

ekatva
(sankhya)

rama
(masculine)

adheyata
uttara-desa / vartamana ,
sarityogah ‘ il
(phala))
adheyata
asrayah ’ < >
(karma) 1 :
abheda
vana
(neuter)
samavaya
ekatva ekatoa

(sankhya) (sankhya)

samavaya

fig. 2.2: Grammarian’s verbal import

OEBPS/image/28.jpg
fig. 4.3: Compact dependency parse

OEBPS/image/11.jpg
> visesanam
visesanam (kartr .

v v B 5 v v
[Svetal| [dhavati] [asvah] [asvah | [dhavati]
(a) graph for sentence (b) (b) graph for sentence (e)

fig. 3.3: Projection with rearrangement of nodes

OEBPS/image/37.jpg
uonnos anbrun 171y 81

32u] asiued anbun 7 opun 7

08892 J0 955 = sSUOIIN|OS paJa}y |e1o]

sasied a33|dwo) jo Aiewwns

OEBPS/image/26.jpg
Sanskrit sentence

I

Word analyser

Sandhied text?

Yes

Segmenter + Word analyser

All possible splits

v

User’s choice

Word-order-decider

Canonical-word-order

W

Dependency parser

JV

Dependency tree

fig. 4.1: Flow and interaction among various modules

OEBPS/image/13.jpg
ramah salam dugdham gacchati pitva

fig. 3.5: Planar dependency graph for sentence (h)

OEBPS/image/30.jpg
karta

'Sl

ramah [1,1] ‘ ramah [1,2]

karta karma

karta ‘ vanam [2,1] ‘ vanar‘;; [2,2] ‘

adhikaranam | adhikaranam

gacchati [3,1] l gacchati [3,2] ‘ gacchati [3,3]

fig. 4.5: Graph showing possible edges satistying akarnksa

OEBPS/image/5.jpg
fig. 1.4: Dependency tree of an English sentence: The king gives
a cow to a brahmana

