
Uomini e (non solo) topi

Gli animali domestici e la fauna antropocora

STRUMENTI PER LA DIDATTICA E LA RICERCA

– 70 –

Marco Masseti

Uomini e (non solo) topi

Gli animali domestici e la fauna antropocora

Uomini e (non solo) topi : gli animali domestici e la fauna antropocora / Marco Masseti. – Firenze : Firenze University Press, 2008.

(Strumenti per la didattica e la ricerca; 70)

http://digital.casalini.it/9788884538178

ISBN 978-88-8453-816-1 (print) ISBN 978-88-8453-817-8 (online)

560.45091638

Seconda Edizione

L'elaborazione grafica delle immagini che non recano altre indicazioni è stata realizzata da Ars & altro s.a.s., Via Chiantigiana 329, 50020 Ginestra Fiorentina (FI).

Editing di Baldo Conti e impaginazione di Riccardo Petrini.

Progetto grafico di copertina Alberto Pizarro Fernández

© 2008 Firenze University Press Università degli Studi di Firenze Firenze University Press Borgo Albizi, 28, 50122 Firenze, Italy http://www.fupress.com/

Printed in Italy

Indice

Ringraziamenti

Ring	raziamenti	X
Prem	aessa dell'autore alla 2ª edizione	xi
Prese	entazione	xii
Prefa	nzione	xiii
Trad	uzione italiana della prefazione di Simon J.M. Davis	xiv
Prem	vessa	XV
	oduzione. Il Mediterraneo come caso di studio ni di biogeografia e di paleobiogeografia mediterranea	1 2
	tolo 1 struendo il passato La paleoecologia Il contributo dell'archeozoologia nella ricostruzione della realtà del pas- sato e nell'ambito delle discipline antropozoologiche	11 11
•	epuscolo di un mondo Sul concetto di estinzione L'estinzione della megafauna tardopleistocenica Morfologie anatomiche e culturali del Paleolitico superiore Decadenza faunistica alla transizione fra Pleistocene superiore ed Olocene	21 21 23 27 30
	tolo 3 nini e lupi I cani più antichi Sull'origine delle razze domestiche	33 35 41
L'alb	tolo 4 na di un nuovo mondo. Aspetti culturali e problemi di ecologia umana l'icino Oriente alla transizione fra il Pleistocene superiore e l'Olocene Lo scenario geografico e ambientale Kebariano (17.000-12.000 a.C.) Kebariano a geometrici (12.000-10.500 a.C.) Natufiano (10.500-8.200 a.C.). L'affermazione degli insediamenti permanenti	45 47 48 50
_	tolo 5 eolitizzazione del Vicino Oriente L'inizio della produzione del cibo. La domesticazione di piante ed animali Protoneolitico e Neolitico preceramico A (PPNA = Pre-Pottery Neolithic A), 8.300-7.600 a.C. Le più antiche evidenze dell'agricoltura	57 57
5.3	Neolitico Preceramico B (PPNB = Pre-Pottery Neolithic B), 7.600-6.000 a.C.	61

Capit	olo 6	
La fa	una domestica e la fauna antropocora	71
6.1	Questioni linguistiche	71
6.2	La fauna antropocora	73
6.3	La fauna domestica	73
Capit	olo 7	
_	ni ungulati domestici	81
7.1	La pecora	81
7.2 7.3	La capra Il bue	87 92
7.3 7.4	Il maiale	92 95
7.5	Criteri archeozoologici per la determinazione dello stato di domesticità	//
	degli ungulati	99
<i>C</i> •	1.0	
Capit	olo 8 ini e topi. Le specie commensali e la fauna antropofila	103
8.1	La fauna selvatica di ambiente urbano	103
8.2	Le specie commensali	105
8.3	Il topolino domestico Mus domesticus Schwarz & Schwarz, 1943	106
8.4	Il ratto nero, Rattus rattus (L., 1758)	109
8.5	Il ratto delle chiaviche, <i>Rattus norvegicus</i> (Berkenhout, 1769)	111
8.6	I topi spinosi	111
8.7 8.8	Il passero domestico, <i>Passer domesticus</i> L., 1758	113 116
8.9	La faina, <i>Martes foina</i> (Erxleben, 1777) La fauna antropofila	118
8.10	I cosiddetti "weeds", ovvero la "malerba"	122
Capit		125
11 gat 9.1	to: un animale domestico? Il gatto selvatico europeo ed il gatto selvatico africano	125 128
9.2	La "domesticazione" del gatto	130
9.3	Il gatto come animale da compagnia	135
	olo 10	1./1
10.1	dal lupo e dal gatto. L'impiego utilitaristico di altri carnivori Il cane delle Falkland, <i>Dusicyon australis</i> (Kerr, 1792)	141 144
10.1	Donnole e martore	147
10.3	Le misteriose "donnole" di Tartesso e la viverra di Plinio il Vecchio	153
<i>C</i> •	1 44	
	olo 11 il Vicino Oriente. La domesticazione dei vertebrati in Africa, Asia	
	ale, Estremo Oriente e Americhe	157
11.1	L'asino	157
11.2	Il cavallo	162
11.3	La renna	165
11.4	I cammelli del Vecchio Mondo	166
11.5	Lo yak	168
11.6	I bovini domestici dell'Estremo Oriente	169

11.11	La faraona o gallina di Numidia	172 173 174 175 178 181
		101
	olo 12	105
12.1	one della fauna Strategie di gestione degli ungulati	185 185
12.2	Gli animali si coltivano o si allevano?	189
12.3		192
12.4	Gli elefanti del paese perduto di Niya	197
Capito	olo 13	
_	ecie semidomestiche e la selvaggina	201
13.1		201
13.2	Il daino, Dama dama (L., 1758)	203
13.3	Il fagiano <i>Phasianus colchicus</i> L., 1758	210
13.4 13.5	Il francolino <i>Francolinus francolinus</i> L., 1766 Il proto-allevamento (protobreeding)	211 214
13.6	Sul concetto di "cinegetizzazione"	217
13.7	Le isole come recinti naturali	219
13.8	Il coniglio, Oryctolagus cuniculus L., 1758	223
Capit	olo 14	
La co	lonizzazione antropica post paleolitica del Mediterraneo e la ridefinizio- gli equilibri faunistici 227	
	La diffusione artificiale di specie esotiche	227
14.2		233
14.3	Le isole come osservatori privilegiati	235
14.4	L'isola di Tilos, nel Mare Egeo orientale: un caso di studio	239
Capite	olo 15	
	e domestiche di origine antica	243
15.1	Il cavallino baio dell'Egeo	243
15.2		250
15.3		255
15.4		260
15.5	Le capre dell'isola di Montecristo (Arcipelago Toscano, Italia)	263
_	olo 16	
	conclusive	269
	La nomenclatura scientifica delle specie domestiche	271 275
16.2		275
Gloss		281
Biblio	ografia consultata	291
Indice	e dei nomi scientifici e italiani dei taxa trattati	331

A mia moglie Silvia e in ricordo di Fabio Vianello (1961-1993), insostituibile compagno d'avventura

Ringraziamenti

Fra i tanti amici e colleghi che mi hanno aiutato, in vario modo, nel corso del presente studio, vorrei ringraziare: Joseph Antoni Alcover, Giovanni Amori, Francesco M. Angelici, Giulio Barsanti, Pierre-Olivier Barome, Wolfgang Böhme, Zlatozar Boev, Giuseppe Bogliani, Mauro Bon, Edoardo Borzatti von Löwenstern, Paolo Boscato, Enzo Burgio, Giuliano Cappelli, Miguel Angel Carretero, Norma Chapman, Vasileios Chondropoulos, Juliet Clutton-Brock, Claudia Corti, Jenny Coy, Mauro Cristaldi, Andreas Darlas, Tamar Dayan, Stella Fraguedakis-Tsolis, Domenico Fulgione, Giorgio Galletti, Renzo Gherardini, Caroline Grigson, Stefano Guiducci, Paul Halstead, David L. Harrison, Gunter Hartl, Rainer Hutterer, Amir Ibrahim, Süleyman Karakaya, Max Kasparek, Tassos Kotsakis, Emad Koubaily, Anastasios Legakis, Adrian M. Lister, Filippo Manconi, Valentin Perez Mellado, Heinrich Mendelssohn, Moyses Mylonas, Ioannis C. Ondrias, Sebastian Payne, Carlo Peretto, Mauro Pieroni, François Poplin, David S. Reese, Peter Rowley-Conwy, Riccardo Romanelli, Marco Rustioni, Adamantios Sampson, Maurizio Sarà, Dale Serjeantson, Stuart Swiny, Antonio Tagliacozzo, Francesco Trafficante, Katerina Trantalidou, Apostolos Trichas, Hans-Peter Uerpmann, Jean-Denis Vigne, Barbara Wilkens e Salim Zahoueh.

Desidero esprimere inoltre la mia riconoscenza più sincera a Umberto Albarella, Raffaello Cantagalli, Ferdinando Ciani, Giuseppe D'Amore, Anna M. De Marinis, Paul Mazza e Bruno Zava, per avere letto criticamente alcune parti del manoscritto; a Benedetto Lanza e Carlo Violani per le appassionanti discussioni sulla nomenclatura degli animali domestici e per i preziosi consigli.

Un ringraziamento particolare va infine ad Augusto e Maria Luisa Azzaroli, Brunetto Chiarelli, Chiara Bullo e Simon J.M. Davis per la loro affettuosa assistenza durante la realizzazione di questa pubblicazione.

Premessa dell'autore alla 2^a edizione

Uomini e (non solo) topi, la cui prima pubblicazione risale a sei anni fa, ha incontrato fin dal suo apparire un particolare favore di pubblico, venendo impiegato fra l'altro sia come libro di testo per corsi universitari, sia come lettura integrativa ai medesimi

Una delle caratteristiche del libro al quale si deve questo favore è stata senz'altro il suo carattere inter e multi-disciplinare: secondo il parere di Jacopo De Grossi Mazzorin del Dipartimento di Biologia Evoluzionistica dell'Università di Lecce, infatti, il volume, esplorando il particolare rapporto che è intercorso tra uomo e animali dal moderno punto di vista storico-archeologico, non poteva prescindere da una seria analisi archeozoologica che esamina i dati forniti dalla ricerca «...integrando il loro studio con quello delle altre fonti di informazione al fine di ricostruire la struttura complessiva delle comunità oggetto della ricerca» («Archeo»).

Ma l'aspetto dell'opera che forse più di altri, in questi sei anni, è riuscito a catturare l'interesse dei lettori è stato il tentativo di coniugare i contenuti della ricerca scientifica ad un approccio di tipo più didattico e divulgativo, nell'intento di chiarire il rapporto che, nei millenni, ha legato il percorso evolutivo degli esseri umani e degli animali, mettendo a fuoco gli effetti biologici, ecologici, genetici e culturali di questa relazione. Mi fa particolare piacere a questo proposito ricordare le parole che il compianto Marco Corti, del Dipartimento di Biologia Animale e dell'Uomo, Università di Roma «La Sapienza», ebbe modo di scrivere su «Hystrix The Italian Journal of Mammalogy»: questo testo era da consigliare: «... a tutti noi, praticanti delle discipline zoologiche e teriologiche, come lettura intelligente ad integrazione della nostra cultura. È da consigliare perché è un libro pieno di nozioni, aggiornato a tutto ciò che di nuovo è stato fatto negli ultimi anni, ma soprattutto perché si legge bene e facilmente. Questo non è un esercizio da poco e riesce solitamente a chi è capace di tradurre, con la necessaria cultura, il proprio entusiasmo in parole scritte. È anche quest'aspetto che pervade tutto il testo a rendere la lettura avvincente, in un intreccio continuo tra zoologia ed evoluzione culturale».

Per questi motivi, si è ritenuto utile e doveroso, d'accordo con la Firenze University Press, procedere alla riedizione dell'opera, nell'auspicio che la sua consultazione continui ad essere ritenuta utile e piacevole come finora è stato.

Marco Masseti

Presentazione

In *Uomini e (non solo) topi*, Marco Masseti presenta un interessante studio sulla storia dei rapporti tra gli animali e l'uomo. Il Mediterraneo ha rappresentato l'area di maggiore influenza in questo senso.

Il libro inizia con una sintesi della paleogeografia dell'area in esame, la ricostruzione della sua cronologia, per passare all'analisi delle numerose estinzioni avvenute nelle faune del tardo Quaternario e fino a tempi recenti.

Nel Neolitico sono iniziati i mutui rapporti tra l'uomo e gli altri animali, giungendo gradualmente alla domesticazione delle specie più adatte alle necessità umane. Tra questi spicca in primo luogo il cane, derivato dal lupo e primo animale domestico. Seguono i grandi e piccoli mammiferi, tra i quali uno degli ultimi è il cavallo: animale veloce, timido e sfuggente, ma anche l'animale che ha maggiormente influito su larga parte delle popolazioni umane.

Nello stesso tempo si evidenzia una forma di commensalismo tra l'uomo e gli animali di piccola e media taglia, tra i quali, oltre al cane, il gatto assume una posizione particolare.

Un capitolo a parte è dedicato alle domesticazioni avvenute in Africa, nell'Asia Centrale, nell'estremo Oriente e nell'America meridionale; vi sono segnalati tra gli altri, le oche e le anatre, le galline faraone, le cavie, i camelidi dell'America Meridionale.

In queste attività l'Australia è rimasta isolata, per il ritardo nell'arrivo dell'uomo, accompagnato a quanto pare dal suo cane, e forse per la carenza di animali adatti alla domesticazione.

Seguono capitoli dedicati alle strategie della gestione della fauna, alle specie semidomestiche.

L'opera si conclude con un esame dei nuovi equilibri faunistici nel Neolitico Mediterraneo, sulle razze di antica origine, sull'utilità degli animali come "bene culturale".

Nell'insieme un libro pieno di interesse, di gradevole lettura e ricco di informazioni inattese.

Augusto Azzaroli

Firenze, 16 ottobre 2001

Prefazione

For millions of years man and his ancestors have lived with, eaten and exploited animals in various ways. As the biblical story of Noah and his Ark suggests, our survival has always depended on animals — not just as a source of food, clothing, and companionship but also as a source of power for the transport of people, goods and even armies. Our animals have helped to change the course of human history in many ways. Here in *Uomini e (non solo) topi* Marco Masseti highlights the relationship between man and certain species of animals and shows how animals — hunted, tamed and domesticated — have played such a central role in helping to shape ancient and modern civilizations. Much of this comes within the discipline known as zoo-archaeology, the study of animal remains from archaeological excavations.

In the early years of the 19th century naturalists began to study the remains of animals found associated with man-made objects such as flint hand axes. One example comes from Sicily where Hugh Falconer studied hippo and elephant bones associated with flint implements. The association of what were clearly man-made tools and the bones of extinct animals from "pre-diluvian" periods posed something of an enigma but helped to convince scientists of human existence before the supposed creation of the world on the 23rd October 4004 BC! Zoo-archaeology's first contribution to science then was in aiding our understanding of the antiquity of man.

As archaeology developed from tomb-robbing and grave digging to become a more rigorous endeavour, the value of animal remains associated with our ancestors' remains came to be appreciated. By the latter half of the 20th century a new branch of archaeology or quaternary palaeontology called zoo-archaeology came into existence.

Animal remains, as Marco Masseti makes abundantly clear in this book, have a major role to play in archaeology, zoology and indeed in our understanding of the development of our present-day culture. They are used to date sites, to help reconstruct past environments, to gain an insight into the nature of the relationship between early people and the environment, and perhaps one of the most exciting areas of research, the change from hunting to husbanding. This change probably first happened in the eastern Mediterranean — a region to which Marco has long been attracted.

Uomini e (non solo) topi provides the reader with a different angle on animals and early man — the role that both wild and domestic animals have played through the ages not only as a source of meat, but as part of our cultural heritage, and how both man and animals have changed the environment, often sadly to the detriment of both.

This is a useful introduction to the subject and I believe will stimulate students to delve deeper into the literature concerning the relations between people and animals.

Simon J.M. Davis Instituto Português de Arquelogia

Lisbona, 2 novembre 2001

Traduzione italiana della prefazione di Simon J.M. Davis

Per milioni di anni l'uomo ed i suoi antenati hanno vissuto in rapporto con gli animali, se ne sono alimentati e li hanno sfruttati in vario modo. Come ci insegna la storia biblica di Noè e della sua arca, la nostra sopravvivenza è sempre dipesa dagli animali — non solo intesi come fonte di cibo, di vestiario o di compagnia, ma anche come una fonte "energetica" per il trasporto di genti, di beni materiali ed anche di eserciti. I nostri animali hanno contribuito in molti modi a cambiare il corso della storia dell'umanità. In *Uomini e (non solo) topi* Marco Masseti mette a fuoco i rapporti intercorsi fra l'uomo ed alcune specie animali, mostrando come queste ultime — siano esse oggetto di caccia, che mansuefatte o domesticate — abbiano giocato un ruolo di importanza fondamentale nella formazione delle civiltà antiche come di quelle moderne. La maggior parte dei dati al riguardo ci proviene dallo studio dell'archeozoologia, la disciplina che si basa sulla considerazione dei resti animali recuperati nel corso delle esplorazioni archeologiche.

Nei primi anni del XIX secolo i naturalisti cominciarono a studiare i resti animali che venivano trovati associati a manufatti umani, come le asce di selce. Un esempio ci viene dalla Sicilia dove Hugh Falconer studiò le ossa di ippopotami ed elefanti associate a strumenti litici. L'associazione di ciò che era chiaramente identificabile come utensile prodotto dall'uomo e le ossa di animali estinti in epoche "pre-diluviane" suscitò più di un enigma ma contribuì, d'altra parte, a convincere gli scienziati a porre in relazione l'esistenza dell'uomo con periodi precedenti alla supposta data della creazione del mondo, il 23 ottobre 4004 a.C. Un primo apporto dell'archeozoologia alla scienza fu quindi la possibilità di capire l'antichità dell'uomo.

Come l'archeologia si è sviluppata da una semplice spoliazione e riesumazione di sepolture fino a divenire una disciplina razionale, si è cominciato anche ad apprezzare il significato dei resti animali che venivano recuperati in associazione a quelli dei nostri antenati. Così, a partire dall'ultima metà del XX secolo, si è andata progressivamente affermando una nuova branca dell'archeologia o paleontologia del Quaternario, chiamata appunto archeozoologia.

I resti animali, come Marco Masseti tende a sottolineare con vigore particolare in questo libro, svolgono un ruolo decisamente importante nell'archeologia, nella zoologia e perfino nel tentativo di comprendere l'evoluzione della nostra cultura attuale. Vengono usati per datare i siti archeologici, per tentare la ricostruzione degli ambienti naturali del passato, per scrutare nella natura delle relazioni fra le comunità umane dei primordi e l'ambiente e all'interno dei meccanismi che hanno determinato quello che forse potremmo definire uno fra più affascinanti settori della ricerca, il passaggio delle comunità umane dalla caccia all'allevamento. Probabilmente, questo cambiamento si è verificato per la prima volta nel Mediterraneo orientale — una regione geografica di cui Marco subisce il fascino da molto tempo.

Uomini e (non solo) topi fornisce al lettore una diversa visuale sui rapporti fra gli animali e l'uomo primitivo — sul ruolo che sia gli animali selvatici sia quelli domestici hanno svolto nel corso delle diverse epoche non solo come fonte di proteine animali, ma anche come parte essenziale del nostro patrimonio culturale, e sui tempi ed i modi in cui l'uomo e gli animali hanno ridefinito gli equilibri ecologici ambientali, spesso purtroppo a svantaggio di entrambi.

Si tratta di un'opera che rappresenta un'utile introduzione all'argomento in questione, che, credo, riuscirà a stimolare negli studenti un approccio appassionato verso la considerazione delle relazioni fra l'uomo e l'animale.

Premessa

Nell'ormai lontano 1937, John Steinbeck dava alle stampe "Of mice and men" uno dei suoi più celebri romanzi, imperniato sulla difficoltà della condizione umana. Ho pensato di intitolare il presente lavoro, prendendo spunto dalla traduzione italiana del romanzo, che è stato intitolato "Uomini e topi", non certo perché vi siano affinità fra i rispettivi contenuti, ma piuttosto per fare riferimento in tono scherzoso all'importanza che hanno rivestito gli animali nell'evoluzione civile dell'uomo. Alcuni anni fa, nel 1989, anche due ricercatori australiani, Greg Wyncoll e Daniel Tangri, si ispirarono a Steinbeck per intitolare "Of mice and men: is the presence of commensal animals in archeological sites a positive correlate of sedentism?", la pubblicazione di una loro ricerca sulle possibili relazioni fra l'origine del commensalismo fra uomo ed animali e delle prime occupazioni territoriali umane permanenti.

Oggi il nostro modo di comportarci nei confronti degli animali è quanto meno singolare. Trattare un cane o un gatto come componenti imprescindibili del nostro mondo domestico, caricandoli di attenzioni e di valenze positive che potremmo, forse, riservare solo alle persone più care è un fatto che non ci stupisce. Anzi, esso in alcuni casi compone e scandisce il nostro vivere quotidiano. Ma quale e quanto lunga è stata la strada che abbiamo percorso per arrivare a questo punto? E, forse più prosaicamente, come sarebbe la nostra vita se non avessimo alle spalle i millenni di storia che ci hanno permesso di progredire culturalmente, evolvendo in parallelo alle altre specie zoologiche che si sono dimostrate fondamentali supporti e strumenti insostituibili di questo nostro divenire?

Il presente lavoro si prefigge la considerazione non solo delle specie animali domestiche, quelle cioè che hanno avuto un ruolo fondamentale nell'evoluzione civile dell'uomo, ma anche delle altre che vi hanno giocato un ruolo che, a volte, può apparire sussidiario ma sempre comunque complementare. Si tratta delle specie che vengono comunemente definite come antropocore, antropofile, commensali, e di tutti quei taxa che hanno contribuito in varia misura alla costruzione dell'ambiente antropogenico. Cercheremo, in sostanza, di riassumere sulla base dei dati attualmente disponibili quale sia stato, e continui ad essere, il ruolo delle diverse specie animali nel progredire sociale, economico, ecologico e culturale dell'umanità. Lo studio si dipana sullo sfondo naturale della sottoregione mediterranea, l'ambiente che forse più di ogni altra porzione geografica del pianeta, ospita le tracce stratificate dell'evoluzione civile dell'uomo.

Marco Masseti Dipartimento di Biologia Animale e Genetica Laboratori di Antropologia Università di Firenze

Firenze, 5 novembre 2001

Figura 1: Particolare di una pittura parietale che decorava l'ambiente Delta 2, dell'abitato preistorico di Akrotiri, sull'isola di Santorini, Grecia (Tardo Minoico IA, verso la fine della prima metà del II millennio a.C.), Atene, Museo Nazionale.

Introduzione

Il Mediterraneo come caso di studio

"Dormono le cime dei monti e i burroni, i promontori e le vallate; dormono le creature che strisciano e si nutrono nella terra nera, dormono gli animali selvatici sulle montagne, le specie delle api e i mostri negli abissi profondi del mare; dormono le generazioni degli uccelli dalle larghe ali."

Alcmane, 58 (VII secolo a.C.)

Questo frammento del poeta lirico greco Alcmane, vissuto agli albori della storia culturale ellenica, ci consegna un'immagine notturna del mondo mediterraneo, pervasa da un sentimento di quiete della natura cui l'uomo sembra essere assolutamente estraneo. Date le condizioni di frammentarietà in cui la lirica ci è pervenuta, non sappiamo se esseri umani comparissero in una qualche porzione del componimento lirico, che può essere andata perduta. Certo è che Alcmane fornisce una descrizione di grande potenza evocativa degli ambienti naturali a lui coevi, che per certi versi sembra riflettere l'incanto degli scorci naturali della regione egea evocati molti secoli prima, intorno alla metà del II millennio a.C., dalla maestria pittorica degli artisti minoici, prima che l'orrenda catastrofe dell'isola di Santorini decretasse la conclusione definitiva di quel raffinatissimo episodio culturale (Figura 1). Ma forse si tratta solo della suggestione prodotta dal potere evocativo della lirica greca del VII secolo a.C., che sembra suggerire l'immagine di un mondo naturale ancora quasi intatto. Già ai tempi di Alcmane, ed ancora prima dell'Età del Bronzo cretese, gli equilibri ecologici delle terre bagnate dal Mediterraneo avevano subito in profondità gli effetti di una ridefinizione ambientale che, avviatasi nella preistoria, fu poi destinata a protrarsi nel corso delle epoche storiche, segnando indelebilmente e senza soluzione di continuità la geografia di questa regione con gli effetti dell' impatto profondo prodotto dall'azione antropica.

Poche regioni del nostro pianeta sono state maltrattate dall'uomo più delle assolate terre mediterranee, tanto che oggi possiamo avere solo una vaga percezione di quelle che erano le antiche ricchezze naturali, i rigogli vegetali ed i lussureggiamenti faunistici di quest'ambiente, ormai ridotto in molte sue parti a poco più di uno scheletro minerale. Non esistono altri posti al mondo come il Mediterraneo in cui si siano avvicendate tante civiltà, modificando, nel corso dei millenni, interi paesaggi, alterando o distruggendo la maggior parte delle biocenosi indigene ed introducendo molte specie alloctone. In sostanza, nessun ecosistema è rimasto intoccato. La vegetazione originaria è stata degradata al ruolo di formazioni secondarie, come la macchia, la gariga e la *frigana*, che oggi rappresentano la maggior parte del paesaggio mediterraneo, dove prosperano specie animali e vegetali estranee ai confini zoogeografici regionali.

2 Introduzione

Cenni di biogeografia e di paleobiogeografia mediterranea

Sotto il profilo biogeografico, il Mediterraneo (Sottoregione Mediterranea) ricade all'interno della più ampia definizione della Regione Paleartica, nei cui confini è compresa una grande porzione dell'emisfero boreale del globo terrestre (cfr. Ghigi, 1950; La Greca, 1986). La biogeografia è un complesso settore di ricerca delle scienze ecologiche che analizza la distribuzione degli organismi viventi, attraverso la regionalizzazione della biosfera in unità distinte, dette appunto biogeografiche. All'interno della biogeografia analitica si coniugano i dati e le informazioni relativi alla distribuzione degli organismi vegetali (fitogeografia) e di quelli animali (zoogeografia). Possiamo attualmente distinguere, ad esempio, diverse regioni floristiche caratterizzabili per la loro flora relativamente omogenea, per la prevalenza di determinati tipi di areali o geoelementi e per la presenza di taxa endemici, oltre al fatto che sono contornate da margini con accentuate differenze floristiche che appartengono alle zone confinanti. Le unità che raggruppano queste suddivisioni floristico-corologiche sono i 7 regni floristici della biosfera: olartide, neo- e paloetropico, capense, australe, antartide e il regno oceanico (Strasburger et al., 1982; Takhtajan, 1986) (Figura 2). Fondandosi, d'altra parte, sulle affinità dei vari gruppi zoologici che vivono in una stessa area geografica e, in particolar modo, sulla distribuzione dei mammiferi, gli zoogeografi hanno diviso la superficie del pianeta in regioni zoogeografiche che, almeno nelle linee generali, coincidono con le grandi masse continentali, sovrapponendosi seppure con qualche differenza, all'estensione dei regni floristici. Le 7 grandi regioni faunistiche sono la Paleartica, la Neartica, l'Etiopica, la Neotropicale, l'Orientale o Indiana, l'Australiana e l'Antartica (Cox & Moore, 1973; Smith, 1983)(Figura 3).

Dallo studio della materia biogeografica emerge che la limitatezza della propagazione di una specie in una determinata zona può dipendere sia da ragioni ecologiche recenti, relazionate alla capacità di sopravvivenza (valenza ecologica, variabilità genetica e mobilità), che da ragioni storiche. La biogeografia analizza la distribuzione olocenica degli esseri viventi, a partire dalle cronologie posteriori alla conclusione dell'ultimo episodio glaciale quaterna-

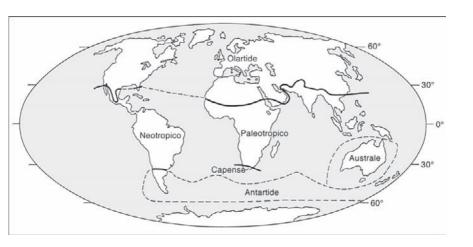


Figura 2: I 7 regni floristici della biosfera: olartide, neo- e paloetropico, capense, australe, antartide e il regno floristico oceanico (da Takhtajan, 1986, ridisegnato).

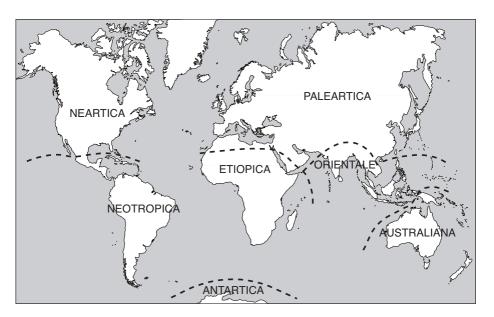
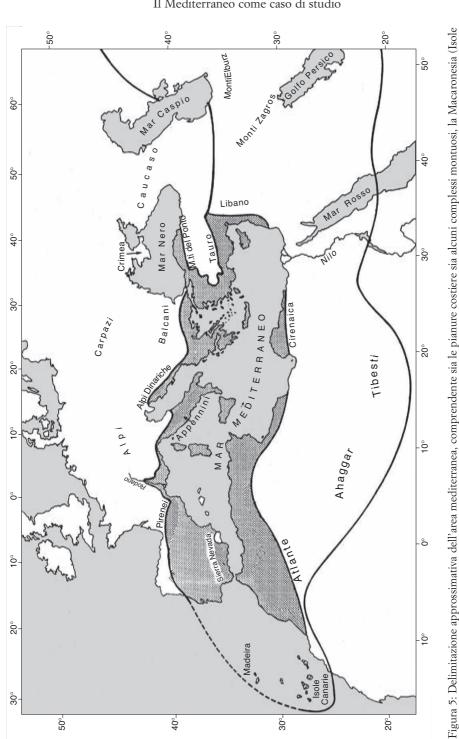


Figura 3: Le 7 grandi regioni zoogeografiche in cui gli zoogeografici hanno suddiviso il pianeta, basandosi soprattutto sulla distribuzione dei mammiferi: paleartica, neartica, etiopica, neotropica, orientale o indiana, australiana e antartica (da Cox & Moore, 1973, ridisegnato).


rio. La ricostruzione, invece, della distribuzione delle specie del passato è materia d'indagine della paleobiogeografia, che si informa ai criteri metodologici ed analitici della biogeografia. Ottenuti attraverso la sovrapposizione dei dati fitogeografici e zoogeografici, i confini della Sottoregione Biogeografica Mediterranea coincidono approssimativamente con quelli del bacino omonimo, comprendendo le aree continentali limitrofe e le innumerevoli isole (cfr. Ghigi, 1950). Gli ecologi, gli storici ed i geografi sono d'accordo nell'identificare il principale carattere che conferisce unitarietà alla sottoregione, ed anche la sua peculiarità, nel clima subtropicale, contraddistinto da estati lunghe e siccitose e da inverni brevi, miti e relativamente piovosi.

Il clima e l'ecosistema mediterraneo non sono comunque esclusivi dei confini fisici dell'antico *mare nostrum* romano, ma si ritrovano in altre quattro regioni geografiche, anche molto distanti fra loro, situate tra il 30° ed il 40° parallelo: la California, parte del Cile non andino, il Sudafrica meridionale ed alcune regioni dell'Australia meridionale (Sarà, 1998; Blondel & Aronson, 1999) (Figura 4). Le formazioni vegetali che tipicizzano quest'ambiente non sono tanto caratterizzabili dal punto di vista tassonomico o in base alle composizioni specifiche delle comunità, che rimangono infatti peculiari dei distinti distretti biogeografici. Sono piuttosto le caratteristiche biologiche a rendere riconoscibili queste biocenosi, rivelandole particolarmente idonee alla sopravvivenza nell'ambito climatico mediterraneo. La vegetazione di questi ambienti è di tipo semi-arido, dominata da alberi e arbusti sempreverdi, con foglie spesso coriacee, quasi sempre piccole e rigide e talora anche aghiformi, atte a ridurre la perdita d'acqua per traspirazione (Strasburger *et al.*, 1982; Polunin & Walters, 1987). La posizione geografica del bacino del Mediterraneo e gli effetti meno catastrofici dei periodi glaciali rispetto a quelli prodotti ad altre latitudini più settentrionali, hanno permesso la

Figura 4: Il clima mediterraneo non è esclusivo dei confini fisici dell'antico *mare nostrum* romano, ma si ritrova in altre quattro regioni geografiche, anche molto distanti fra loro, ma situate sempre tra il 30° ed il 40° parallelo: la California, parte del Cile non andino, il Sudafrica meridionale ed alcune regioni dell'Australia meridionale.

formazione e la conservazione di una flora straordinariamente ricca di specie e di endemiti. I limiti delle unità biotiche regionali sono spesso indicati in base alla distribuzione di alcune specie-guida, il cui areale coincide quasi perfettamente con l'ambito geografico e spaziale (Sarà, 1998). L'estensione biogeografica della Sottoregione Mediterranea può essere, quindi, individuata sulla base della diffusione territoriale di alcune specie vegetali, come ad esempio l'olivo, Olea europaea L., la cui coltura è praticata anche lungo il Mar Nero e parte delle coste atlantiche della penisola iberica, ma non interessa certe porzioni della Libia e dell'Egitto settentrionali. Plinio il vecchio (23-79 d.C.) è stato probabilmente il primo autore ad usare l'areale di coltivazione dell'olivo nel tentativo di fornire una definizione soddisfacente dei limiti del Mediterraneo. Un quadro analogo può essere offerto da altre piante, fra cui il pino d'Aleppo, Pinus halepensis Miller, ed il rosmarino, Rosmarinus officinalis L., anch'esse assenti da alcuni tratti desertici della costa libico-egiziana. Vari autori hanno però osservato come non sia appropriato ricorrere alla distribuzione di una pianta coltivata per delimitare un'unità biogeografica, anche nel caso che la pianta sia originaria della regione stessa (Blondel & Aronson, 1999). Un approccio più realistico verrebbe dunque offerto dalla considerazione combinata del fattore vegetale con quello climatico, come è stato suggerito da Gaussen (1954). Insieme all'analisi climatica, i tipici raggruppamenti floristici sono identificati in questo "approccio bioclimatico" nell'individuazione di due o più piante dominanti la cui presenza combinata caratterizzi invariabilmente una serie di zone vegetazionali altitudinali che si sostituiscono col procedere della quota, della latitudine e dell'esposizione. A questo riguardo, Blondel & Aronson (1999) suggeriscono che la delimitazione del territorio fitogeografico

Canarie) e la costa atlantica del Marocco; la linea scura più bassa che individua la porzione meridionale della mappa, indica la regione isoclimatica definita da Daget (1977) (da Blondel & Aronson, 1999, ridisegnato).

Introduzione

mediterraneo comprenda non solo la zona "basale" con la formazione dei cespugli perenni, ma anche le zone altitudinali al di sopra di essa (Figura 5). Per individuare l'estensione dell'unità biotica mediterranea *stricto sensu* (stenomediterranea) è stato anche suggerito di riferirsi agli areali di diffusione di due arbusti resinosi congenerici, il lentisco, *Pistacia lentiscus* L., (Figura 6) ed il terebinto, *P. terebintus* L. (Figura 7), la cui distribuzione è prevalentemente costiera e molto più ristretta geograficamente dell'areale definibile come mediterraneo, dal punto di vista climatico (Zangheri, 1972; Sarà, 1998) (Figura 8).

L'evidente condizionamento del clima e la particolarità di queste essenze vegetali possono essere correlati all'areale di diffusione anche di alcune specie zoologiche, come ad esempio la monachella, *Oenanthe hispanica* (L., 1758) e la sterpazzolina, *Sylvia cantillans* (Pallas, 1764), a conforto della stretta interrelazione esistente fra clima, ambiente, specie vegetali ed animali. Meno di un quarto delle specie di mammiferi che popolano attualmente la Sottoregione Mediterranea sono state descritte come endemiche dell'area (Cheylan, 1990). Fra esse figurano, ad esempio, la bertuccia berbera, *Macaca sylvanus* L., 1758 (Figura 9), e il coniglio selvatico, *Oryctolagus cuniculus* (L., 1758). Il numero degli endemiti però decresce sensibilmente qualora si consideri la composizione della fauna insulare a mammiferi. Ricerche genetiche e morfometriche hanno infatti dimostrato che solo pochissimi micromammiferi endemici sopravvivono ancora nelle isole mediterranee (Masseti, 1998). Esse sono essenzialmente riconducibili a due specie del genere *Crocidura*: il toporagno siciliano, *Crocidura sicula* Miller, 1900, diffuso su alcune isole dell'arcipelago siculo-maltese (Sarà, 1995, 1996; Bonfiglio *et al.*, 1997) (Figura 10), ed il toporagno di Creta, *C. zimmermanni* Wettstein, 1953 (Reumer, 1986, 1996) (Figura 11).

Come abbiamo già osservato, l'aspetto del paesaggio attuale del Mediterraneo è il risultato della interazione continuata, prodottasi nel corso dei millenni, tra uomo ed ambiente naturale. Nel Mediterraneo è oggi meno facile che in altre aree geografiche del pianeta riconoscere i segni di quest'azione antropica prolungata. Essi si presentano indissolubilmente inseriti nelle maglie degli ecosistemi naturali e sono ormai tanto connaturati alla visione ambientale d'insieme da non permettere di comprendere la successione delle stratificazioni cronologiche per quello che esse sono in realtà. Ci resta difficile, ad esempio, considerare gli agrumeti che tipicizzano estesamente l'odierno paesaggio di molte aree della regione come il trionfante risultato della felice ambientazione di vegetali esotici avviata dagli Arabi a partire, molto

Figura 6: Il lentisco, *Pistacia lentiscus* L., è un arbusto cespuglioso che raggiunge a volte l'altezza di un piccolo albero, fino a 6-8 metri. Maremme del Guadalquivir, Andalusia (Spagna) (foto di Marco Masseti).

Figura 7: La distribuzione del terebinto, *P. terebintus* L., albero alto fino a 5-10 metri, è molto simile a quella del lentisco, rispetto al quale si spinge più in alto e verso l'interno. Isola di Tilos, Dodecaneso (Grecia) (foto di Marco Masseti).

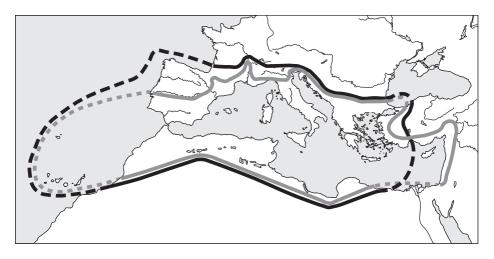


Figura 8: Confini climatico-ambientali della Sottoregione Mediterranea individuati sulla base della distribuzione del lentisco, *Pistacia lentiscus* L., e del terebinto, *P. terebintus* L. (da Sarà, 1998, rielaborato).

Figura 9: Subadulto di bertuccia berbera, *Macaca sylvanus* L., 1758, l'unica scimmia del Paleartico occidentale. Rocca di Gibilterra (Gran Bretagna) (foto di Marco Masseti).

Figura 10: Recenti studi genetici e morfometrici hanno dimostrato che solo pochissimi micromammiferi endemici sopravvivono ancora nelle isole mediterranee e che questi sono essenzialmente rappresentati da due specie di crocidura. Nella foto, un rappresentante della popolazione melanica di toporagno siciliano, *Crocidura sicula* Miller, 1900, dell'isola di Ustica (foto Maurizio Sarà).

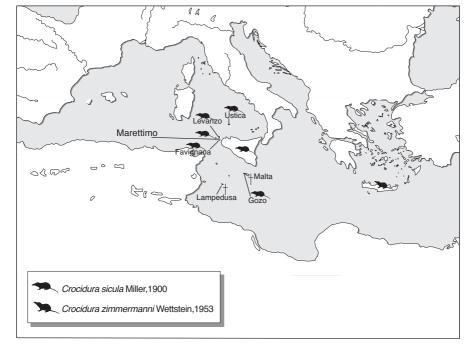


Figura 11: Distribuzione attuale dei rappresentanti endemici del genere *Crocidura* Wagler, 1832, nelle isole mediterranee.

verosimilmente, da prima del IX secolo d.C. (cfr. Calabrese, 1998) (Figura 12). Quasi certamente i promulgatori della fede islamica conobbero gli agrumi in India e da là li trasportarono inizialmente nella penisola arabica e poi nelle regioni confinanti e, parallelamente alla loro avanzata militare e culturale, anche in Nordafrica, in Sicilia, in Spagna. Nonostante che gli agrumi fossero già conosciuti ed apprezzati nel mondo romano, la pratica della loro coltivazione divenne comune al tempo della colonizzazione islamica del Mediterraneo ed ebbe uno dei suoi massimi apprezzamenti in Granada, "la città che rivaleggiava col giardino delle Esperidi"; ma anche le città di Siviglia, Cordoba e Palermo dovevano profumare di zagara d'arancio amaro. Da quei tempi, la storia degli agrumi è andata progressivamente fondendosi con l'evoluzione culturale delle civiltà mediterranee tanto da assumere un ruolo di particolare rilievo nelle tradizioni popolari locali. Oggi, è quasi impossibile considerare aranci e limoni come elementi biologici estranei agli originari orizzonti floristici della sottoregione. Eppure, il nucleo genetico primordiale da cui si sono formati gli agrumi domestici si è originato in Cina ed in alcune porzioni limitrofe dell'Estremo Oriente (Calabrese, 1998). Per fare posto a queste nuove colture ed agli innegabili benefici economici e medici da esse derivanti, la vegetazione naturale mediterranea è stata modificata o distrutta da attività agricole plurisecolari. Questo degli agrumi è solo uno dei tanti esempi di sovvertimento ambientale attuato a sfavore delle biocenosi indigene fino dalle epoche più antiche. Individuare e tentare di ricostruire scientificamente gli ecosistemi mediterranei del passato è fra gli scopi della moderna ricerca paleoecologica.

Figura 12: Un agrumeto nell'isola di Samos, Mare Egeo orientale (Grecia) (foto di Marco Masseti).

Ricostruendo il passato

"Mio illustre amico e gioia del mio cuore!

Ciò che mi chiedi è tanto difficile quanto inutile.

Pur avendo passato tutta la mia vita in questo posto, non ho mai contato le case né indagato sul numero degli abitanti.

Quanto l'uno carichi sul suo mulo o l'altro stivi nella sua barca, non è affare mio.

Ma soprattutto, riguardo alla storia passata di questa città, Dio solo sa quanta polvere e confusione abbiano mangiato gli infedeli prima dell'avvento della spada dell'Islam.

Sarebbe vano per noi indagare a tal riguardo."

Lettera del sindaco di Kuyungik ai primi archeologi all'opera a Niniveh (da A.H. Layard, 1882 - Niniveh and Babylon)

1.1 La paleoecologia

La paleoecologia, è una disciplina di sviluppo molto moderno, individuabile nei più ampi confini della paleontologia e che studia le condizioni ambientali in cui sono vissuti le piante e gli animali del passato, le situazioni climatiche e lo stato della flora e della fauna; tratta, in sostanza, dello studio dell'ambiente naturale del passato. Essa si informa, a grandi linee, sui principi generali dell'ecologia, la scienza che si occupa dei rapporti fra gli organismi biologici e l'ambiente in cui essi vivono e si sviluppano e che, a sua volta, può essere distinta in "autoecologia" (ecologia degli organismi = relazioni di un particolare organismo con particolari fattori ambientali), "demoecologia" (ecologia della popolazione = relazione di una popolazione nei riguardi del suo ambiente) e "sinecologia" (ecologia delle comunità = relazioni di una comunità con il suo ambiente). Materia d'indagine piuttosto complessa, l'ecologia preistorica si avvale di contributi investigativi multidisciplinari e di analisi interdisciplinari. Nel suo studio infatti confluiscono varie discipline di ambito sia archeologico sia biologico, quali ad esempio l'archeologia, la paletnologia, la paleontologia umana, la paleontologia dei vertebrati, la paleobotanica, la palinologia, la archeozoologia, la biogeografia, la paleobiogeografia, la zoologia, la botanica, l'etnologia, l'etnozoologia e l'etnobotanica. In quest'ottica, anche le informazioni desumibili dagli ambiti disciplinari della mineralogia, geologia, geomorfologia e sedimentologia possono apportare un importante contributo. La paleoecologia è dunque la disciplina che tenta di comprendere le caratteristiche dei paleoecosistemi e di ricostruire gli ambienti naturali del passato, anche individuando le interazioni che sono avvenute al loro interno fra gli organismi biologici che li componevano e le comunità umane.

Momento imprescindibile ai fini dello studio paleoecologico è, ovviamente, l'individuazione del paleoambiente, del paleoecosistema, che si prefigura come una comunità di organismi biologici che ha interagito nel passato col proprio ambiente fisico come un'unità biologica. Il paleoecosistema si fonda essenzialmente su quelle che sono state le relazioni trofiche degli elementi biologici che hanno svolto attività al suo interno, dando rilievo all'effetto

12 Capitolo 1

1. Dati biotici (fossili e subfossili): Reperti osteologici, paleobotanici e pollinici.

2. Dati abiotici (archeologici):
Indicazioni sedimentarie, stratigrafiche, tafonomiche, cronologiche e culturali, fra cui anche quelle desumibili dalle produzioni iconografiche.

Figura 1.1: Elementi su cui si basa la ricostruzione paleoambientale.

dei fattori abiotici (clima, composizione dell'acqua e del suolo) e biotici (specie, popolazioni, biocenosi). Per tentare di ricostruire le caratteristiche fisiche di un paleoambiente possiamo disporre di due diversi gruppi di dati (Figura 1.1). Al primo gruppo, costituito dai dati biotici, afferiscono essenzialmente i materiali fossili e subfossili, rappresentati da reperti osteologici, paleobotanici e pollinici. Il secondo gruppo, invece, è quello costituito dai dati abiotici ed interessa la sfera dei dati archeologici, comprendendo indicazioni di tipo sedimentologico, stratigrafico, cronologico e culturale, fra cui trovano posto anche le informazioni desumibili dalle produzioni iconografiche. L'analisi dell'elemento iconografico, in particolare, può fornire valide informazioni complementari allo studio delle caratteristiche paleoambientali

Figura 1.2: Particolare delle pitture parietali che decorano la Grotta Chauvet, nell'Ardèche (Francia). Vi è raffigurato un maschio acorne di megalocero gigante, *Megaloceros giganteus* Berckhemer, 1910, cervide di dimensioni imponenti che ha caratterizzato con la sua diffusione le associazioni faunistiche europee del Pleistocene medio e superiore, estinguendosi intorno ai 12.000-11.000 anni fa (da Chauvet *et al.*, 1996).

qualora la possibilità di accedere ad altre fonti di informazione sia limitata. Questo caso si può verificare nell'ambito dello studio delle culture umane preistoriche e protostoriche, come avviene ad esempio per un'ampia sequenza dell'Età del Bronzo cretese. La mancata decifrazione del Lineare A, l'alfabeto in cui si esprimeva la splendida cultura minoica fiorita sulla grande isola del Mediterraneo orientale nel corso del II millennio a.C., continua a relegare questo complesso culturale nella dimensione delle cosiddette culture preistoriche, di cui è tutt'ora impossibile procedere alla decifrazione dei documenti scritti.

Altri elementi importanti in questo tipo di studio sono quelli desumibili dai dati tafonomici, riguardanti cioè le cause di morte, e dai dati paleoentomologici, in quanto gli insetti offrono una risposta immediata alle variazioni ambientali e più repentina rispetto a quella delle piante. Elementi importanti sono inoltre quelli che riguardano gli isotopi, in particolare quelli dell'ossigeno per le informazioni sulle paleotemperature. Solo dopo avere sintetizzato tutti questi dati nel tentativo di definire un quadro unitario e coerente, si può cominciare a formulare le prime ipotesi di una ricostruzione paleoambientale.

Spesso, nello studio paleoecologico, ci si trova ad avere a che fare con specie vegetali ed animali che si sono estinte anche in epoche molto lontane dalla nostra. In questi casi ci troviamo di fronte a *taxa* che è possibile conoscere solo a livello paleontologico. Nel caso ad esempio di un mammifero scomparso da molto tempo, l'esame dei suoi reperti scheletrici fossili può solo informarci sull'aspetto generale e le dimensioni delle sue ossa, ma difficilmen-

Figura 1.3: Ricostruzione ideale della morfologia esterna di M. giganteus (da Geist, 1999).

14 Capitolo 1

te potrebbe permetterci la ricostruzione dettagliata della sua morfologia esterna, compresa la colorazione del mantello. Né tanto meno potremmo risalire a quelle che dovevano essere le caratteristiche biologiche ed ecologiche della specie in esame, o addirittura procedere alla ricostruzione dei tratti *essenziali* della sua etologia. Una specie conosciuta solo a livello paleontologico va trattata diversamente dai taxa biologici che sono invece studiati nella totalità delle loro manifestazioni dall'applicazione delle discipline neontologiche. Lo studio della paleoiconografia può essere di grande aiuto quando si voglia procedere alla ricostruzione della morfologia esterna di una "specie paleontologica".

Il megalocero gigante, *Megaloceros giganteus* Berckhemer, 1910, ad esempio, era un cervide di dimensioni imponenti che caratterizzò con la sua diffusione le associazioni faunistiche europee del Pleistocene medio e superiore, estinguendosi intorno ai 12.000-11.000 anni fa (Stuart, 1991). Un tempo si disponeva solo delle informazioni riguardanti il suo apparato scheletrico, ma la scoperta di alcune raffigurazioni dell'arte paleolitica francese, nelle grotte di Cougnac (Leroi-Gourhan, 1980) e Chauvet (Chauvet *et al.*, 1996) (Figura 1.2), in cui è accuratamente descritta la morfologia di alcuni esemplari di questo cervide gigante, hanno finalmente illuminato sulla colorazione e sul disegno del mantello della specie (cfr. Geist, 1987, 1999) (Figura 1.3).

In ambiente mediterraneo, malgrado la scoperta di un grande numero di giacimenti fossili, non è stato ancora possibile individuare con sicurezza le oscillazioni climatiche tardiglaciali, a causa forse del progressivo aumento di aridità che rese l'ambiente monotono, sotto il profilo vegetazionale, favorendo l'estendersi di steppe erbacee e cespugliose caratterizzate dalla diffusione di un equide particolare, l'*Equus bydruntinus* Regalia, 1904 (Figura 1.4). A

Figura 1.4: Incisione tardopaleolitica raffigurante un probabile asino delle steppe europeo, *Equus bydruntinus* Regalia, 1904. Grotta di Levanzo (Isole Egadi, Sicilia) (da Graziosi, 1973).

questa specie fu dato il nome di asino d'Otranto dal sito italiano che ha restituito per la prima volta i suoi resti: la Grotta Romanelli in terra d'Otranto (Puglia). Chiamato anche asino delle steppe europeo, asino idruntino o, semplicemente, idruntino, si tratta appunto di una specie abbondantemente documentata nel corso dell'intero Tardiglaciale mediterraneo (Sala, 1980). Il fatto che non sia stato ancora possibile recuperare un cranio completo dell'animale condiziona però ogni tentativo di ricostruzione della sua morfologia esterna, rendendone piuttosto difficile la collocazione tassonomica. L'arte italiana del tardo Paleolitico ci ha tramandato poche rappresentazioni di questo equide, essenzialmente rintracciabili nelle incisioni rupestri delle grotte del Monte Pellegrino (Addaura e Niscemi) in Sicilia, della Grotta della Cala dei Genovesi a Levanzo, una delle Isole Egadi, ed in rari oggetti di arte mobiliare recuperati in area continentale (Masseti & Rustioni, 1990). Queste raffigurazioni preistoriche suggeriscono l'immagine di un equide simile ad un asino, o a una zebra. In questo senso, dunque, l'analisi paleo-iconografica può essere d'aiuto, consentendo una percezione diversa della specie in oggetto, attraverso l'esame delle rappresentazioni artistiche disponibili.

La questione si complica ulteriormente quando si cerca di ricostruire il modo di vita di una specie conosciuta solo sotto il profilo dell'informazione paleontologica, dal momento che non possediamo alcuna indicazione chiarificatrice al riguardo. Si procede allora in una ricostruzione che viene messa in pratica per analogia con le specie viventi di cui si conosca la biologia. In alcuni casi, quando non esistono forme selvatiche che consentano di ricostruire i modi di vita di una specie estinta, si può anche fare ricorso allo studio delle razze domestiche da quella derivate, come, ad esempio, nel caso del dromedario e del bue che sopravvivono attualmente solo in questa condizione. Si applica in sostanza una metodologia investigativa empirica che fonda le sue basi teoriche sul cosiddetto "concetto di analogia", proprio dell'indagine archeologica, e che va inteso nella messa in evidenza delle somiglianze intercorrenti fra due fenomeni osservati, anche se distribuiti diversamente sia nel tempo che nello spazio. La maggior parte degli autori sono concordi nel considerare questo tipo d'approccio come fra i più corretti da utilizzare nell'analisi archeologica, anche se ci si continua ad interrogare sulle modalità di utilizzo di questo metodo (cfr. Ascher, 1961; Bindford, 1967; Hodder, 1982; Shipman, 1989).

Le tecniche di datazione sono fondamentali al fine di comprendere i cambiamenti naturali e culturali che sono occorsi nel passato. La forma più semplice di datazione è rappresentata dal fatto che, nei depositi non disturbati, i livelli più recenti ricoprono quelli più antichi. Questa legge della "sovrapposizione" indica quali sono i livelli stratigrafici che si sono depositati per primi, ma non consente di individuarne l'età reale. Preferibilmente, i livelli stratigrafici dovrebbero essere infatti collocati non solo in posizione di sequenza relativa, ma anche puntualmente nel tempo: per questa ragione è necessario assegnare loro una datazione assoluta da esprimere in anni. È possibile riassumere in alcune categorie principali, le metodologie che vengono attualmente adottate nel tentativo di procedere ad una datazione assoluta: le metodologie che si basano sulle evidenze storiche, quelle che tengono conto dei ritmi stagionali naturali o del tasso di crescita annuale degli organismi biologici (dendrocronologia), valutazione dell'accrescimento delle varve, quelle fondate sul paleomagnetismo ed, infine, quelle che impiegano tecniche basate su radioisotopi, quale ad esempio il radiocarbonio (Roberts, 1989). Quest'ultima metodologia può essere applicata a tutti i materiali che contengano carbonio. Il metodo si basa sul fatto che l'isotopo radioattivo 14C, che costituisce una frazione minima del carbonio presente in natura, decade molto lentamente in 14N, un isotopo stabile dell'azoto (Figura 1.5). Il 14C si produce continuamente nell'atmosfera grazie ai raggi cosmici. Il suo rapporto con il più diffuso 12C è noto (circa uno a un milione) ed è approssimativamen16 Capitolo 1

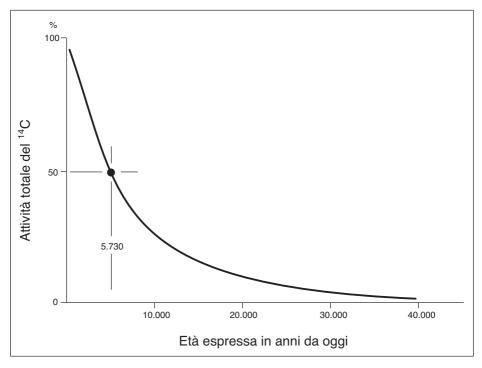


Figura 1.5: Curva di decadimento del radiocarbonio (da Roberts, 1989, ridisegnato).

te costante. Dopo la morte di un organismo biologico che abbia assimilato il carbonio attraverso i livelli trofici della catena alimentare, il ¹⁴C diventa un po' alla volta ¹⁴N, dimezzandosi ogni 5.700 anni. Dopo circa 40.000 anni il ¹⁴C diventa troppo scarso per potere essere misurato e può anche avere luogo qualche forma di contaminazione con materiali più recenti che ne falsano la misurazione. Un reperto archeologico che contiene carbonio può essere quindi datato grazie al suo rapporto fra ¹⁴C e ¹²C. Recentemente, una nuova tecnica basata sul decadimento di un altro isotopo permette di calibrare e di rendere più attendibili le datazioni al radiocarbonio ottenute in precedenza. In ogni caso, il metodo del ¹⁴C non può essere utilizzato con campioni di età molto recente. Infatti, la grande quantità di combustibili fossili che è stata bruciata fino dai tempi della Rivoluzione Industriale — collocabile in Europa occidentale a partire dalla metà del XVIII secolo — ha avuto come conseguenza l'immissione nell'atmosfera di carboni geologicamente antichi che hanno abbassato il contenuto di ¹⁴C facendo sembrare i campioni recenti più antichi di quanto realmente siano e producendo il cosiddetto "*Suess effect*". La datazione col radiocarbonio è poco usata nel caso di campioni che siano più recenti di 150 anni (Roberts, 1989).

1.2 Il contributo dell'archeozoologia nella ricostruzione della realtà del passato e nell'ambito delle discipline antropozoologiche

Un animale domestico è un organismo vivente indissolubilmente dipendente dall'uomo. Noi oggi consideriamo la sua esistenza come scontata, anche se in termini evoluzionistici gli animali domestici sono comparsi solo in cronologie recentissime. Per la maggior parte della preistoria infatti l'uomo ha esclusivamente basato la propria sussistenza su un'economia di caccia e di raccolta, di sfruttamento non produttivistico delle risorse naturali. Possiamo ritenere che questa situazione si sia protratta per più di due milioni di anni, dal supposto momento della comparsa sulla terra del genere *Homo* L., 1758. La transizione ad un economia di produzione del cibo, e quindi alla domesticazione degli animali e delle piante, è invece un fenomeno assai recente, verificatosi a partire da non prima di 10.000 anni fa, ma che si è rivelato economicamente determinante per lo sviluppo delle culture umane, al pari dell'acquisizione della capacità di fabbricare utensili e/o della scoperta del fuoco. L'evoluzione di una specie domestica è plasmata soprattutto dalla selezione umana, mentre la selezione naturale vi gioca un ruolo sussidiario.

Spesso gli animali domestici rivelano una morfologia piuttosto diversa dai progenitori selvatici, che si esprime, ad esempio, in modificazioni della struttura ossea e nel lussureggiamento di alcuni caratteri favoriti dalla selezione antropica. D'altra parte, però, come ha osservato Ryder (1983), distinguere un animale selvatico da uno domestico, nei primi stadi della domesticazione, è difficile perché la forma domestica si presenta ancora del tutto simile a quella selvatica da cui è derivata. Come è possibile dunque, confrontando le diverse informazioni disponibili in un sito archeologico, determinare lo status — domestico o selvatico — di una particolare specie quando si disponga soltanto di resti osteologici? L'importanza archeologica dei resti animali viene oggi analizzata nell'ambito dello studio della "archeozoologia", disciplina anche nota con i sinonimi "zooarcheologia" e "osteoarcheologia" (Davis, 1982b). Questa disciplina ha prodotto notevoli contributi nell'ambito della ricerca paleoecologica, con un'attenzione particolare alle problematiche suscitate dallo studio degli ecosistemi antropici preistorici, dell'economia delle comunità umane primitive e, soprattutto, dell'avviarsi del processo della produzione del cibo e della domesticazione degli animali. Campo specifico dell'archeozoologia è infatti lo studio dei reperti faunistici presenti nei giacimenti archeologici, come conseguenza dell'attività umana (caccia e allevamento) (Tozzi, 1989), considerando in qualche misura anche l'apporto dei predatori e degli individui morti casualmente.

Lo studio archeozoologico si basa esclusivamente sull'analisi dei campioni faunistici rinvenuti nei giacimenti archeologici, e che sono per lo più rappresentati dai materiali organici più resistenti all'azione disgregante del tempo, come frammenti ossei, denti e corna. Il suo scopo è quello di ricostruire la dieta e i sistemi di sussistenza rilevabili dai singoli siti, per poi passare ad un livello superiore di conoscenza: dal ruolo degli animali nell'ecosistema e nell'economia, ai sistemi di allevamento ed alla ridistribuzione delle diverse produzioni in ambito territoriale (Barker, 1978, 1986; Clark, 1985; Jarman, 1972; Uerpmann, 1973; Tozzi, 1989; Tagliacozzo, 1993a). Lo studio archeozoologico è oggi parte integrante dell'insieme delle discipline specialistiche che vengono coinvolte nello scavo e nell' analisi dei giacimenti archeologici di qualunque periodo preistorico e storico. Tale integrazione è resa possibile dall'attenzione nel recupero dei materiali di scavo, anche di quelli più minuti ed apparentemente meno indicativi, come ad esempio la setacciatura del deposito rimosso che può permettere il recupero dei resti della microfauna. Altri aspetti particolari della ricerca archeozoologica sono quelli relativi allo studio della fauna antropocora, della diffusione delle specie sinantropiche e commensali dell'uomo, oltre che dei taxa che sono stati esclusi dal vero e proprio processo di domesticazione per essere consacrati ad un ruolo altrettanto specialistico, come quello, ad esempio, rivestito dalla selvaggina: dalle specie che costituiscono oggetto di caccia.

Benché le tecniche di analisi delle ossa siano desunte dalla paleontologia e dalla zoologia, l'obbiettivo principale dell'archeozoologia è quello di contribuire alla ricostruzione

18 Capitolo 1

della storia economica, assumendo di conseguenza anche un profondo significato di tipo archeologico. L'interdisciplinarietà tra ricerca naturalistica ed archeologica si articola attraverso un'analisi critica finalizzata alla valutazione dei processi che hanno determinato da una parte la selezione, l'accumulo e la conservazione dei materiali osteologici in relazione all'ambiente sedimentario e, dall'altra, l'attendibilità e il significato del campione in base alla sua ampiezza, alle tecniche di scavo e di raccolta, all'estensione dell'area di scavo, ai tipi di strutture esistenti, al tipo di deposito e al contesto culturale da cui esso proviene (Tozzi, 1989). L'archeozoologia può essere considerata a pieno diritto una disciplina al servizio dell'archeologia e dell'antropologia, sia per quanto concerne la migliore comprensione dell'uomo attraverso lo studio dell'evoluzione della sua cultura, che per quanto riguarda la conoscenza delle modificazioni ambientali che hanno accompagnato ed influenzato la sua crescita culturale. L'archeozoologia costituisce, in sostanza, una parte integrante della moderna ricerca paleoecologica.

Come abbiamo già osservato, l'analisi dei resti faunistici ha come scopo quello di individuare le strategie di sussistenza umane. Ma, a questo proposito, va tenuto presente che non tutte le specie presenti nel deposito possono essere direttamente collegabili all'attività umana. Vanno infatti considerate anche le possibilità di accumulo derivate da altri fattori, quali la morte naturale e l'azione dei predatori. La correttezza dell'analisi archeozoologica si basa sul presupposto che non ci possa essere coincidenza fra il campione osteologico reso disponibile dallo scavo e la composizione faunistica presente originariamente nell'area del sito esaminato. Il campione archeologico può dare solo una generica indicazione di quella che doveva essere l'originaria disponibilità ambientale. Con grande efficacia, Davis (1987), seguendo uno schema già delineato da Meadow (1980) e Payne (1985a), ha sintetizzato in due categorie principali i fattori che intervengono nella trasformazione del campione fra il momento della deposizione e quello della riscoperta (Figura 1.6):

- 1. Fattori estranei al controllo dell'archeologo. Sono tutti quelli che incorrono prima che avvenga lo scavo del giacimento, su cui l'archeologo non può avere alcuna influenza. Si tratta di fattori naturali, legati soprattutto alle caratteristiche sedimentarie del sito, ai processi postdeposizionali, in cui intervengono diversi agenti modificatori (esogeni ed endogeni), al comportamento umano che ha determinato la selezione preferenziale e l'accumulo di alcune specie rispetto ad altre, al comportamento dei predatori.
- 2. Fattori controllati dall'archeologo. Sono tutti quelli relazionati con lo scavo del giacimento: soprattutto le tecniche di scavo, la selezione della parte del giacimento da scavare, la scelta della tecnica e degli strumenti di setacciatura del deposito, le procedure analitiche utilizzate nella scelta del campione da analizzare.

Secondo Klein & Cruz-Uribe (1984), il processo di trasformazione del campione archeologico si articola nei seguenti cinque stadi:

- 1. *l'insieme vivo*, concernente tutte le specie faunistiche che vivevano nell'area del sito preso in esame;
- 2. *l'insieme morto*, composto dalle specie morte per cause naturali, per predazione umana o animale;
- 3. *l'insieme depositato*, che riguarda la parte dell'insieme che viene introdotto nel sito;
- 4. *l'insieme fossile*, l'insieme depositato che fossilizza nel sito;
- 5. il campione fossile che viene recuperato durante lo scavo archeologico.

Alcuni stadi possono essere considerati coincidenti, come ad esempio gli ultimi due quando si verifichi il caso in cui un sito sia stato interamente esplorato archeologicamente, con l'accurata setacciatura di tutti i reperti osteologici. A volte si può anche ragionevolmente accetta-