

claudio borri michele betti enzo marino

LECTURES ON SOLID MECHANICS

MANUALI SCIENZE TECNOLOGICHE

-4-

CLAUDIO BORRI MICHELE BETTI, ENZO MARINO

Lectures on solid mechanics

Firenze University Press 2008

Lectures on solid mechanics / Claudio Borri, Michele Betti, Enzo Marino. – Firenze : Firenze university press, 2008.

(Manuali Scienze Tecnologiche ; 4)

http://digital.casalini.it/9788884538543

ISBN 978-88-8453-854-3 (online) ISBN 978-88-8453-853-6 (print)

This publication has been supported by the DEREC Tempus Project with the contribution of the European Commission Directorate General for Education and Culture and by Ente Cassa di Risparmio di Firenze.

Progetto grafico di Alberto Pizarro Fernández

© 2008 Firenze University Press Università degli Studi di Firenze Firenze University Press Borgo Albizi, 28 50122 Firenze, Italy http://www.fupress.com/

Printed in Italy

Contents

List of Fi	gures	IX
Forewor	d	XIII
Part I		
Theory o	f elasticity	1
Chapter :	1 – Outline of linear algebra	3
1.1	Vector spaces and linear mappings	3
	1.1.1 Vector spaces	3
	1.1.2 Linear mappings	4 8
1.2	Euclidean spaces	8
	1.2.1 Euclidean metric tensor and scalar product	9
	1.2.2 Eigenvalues and eigenvectors	10
1.3	Tensors	11
	1.3.1 Tensors and linear mappings	11
1.4	Coordinate systems	13
	1.4.1 Linear mappings and the metric tensor	14
		15
	1.4.3 Examples of coordinate systems	17
	1.4.4 Volumes and the vector product	21
1.5	Covariant differentiation	24
	1.5.1 Grad, div, curl and Laplace's operator	25
	1.6 Affine space	29
	1.6.1 Free and applied vectors	29
1.7	Surfaces	32
Chapter :	2 – Analysis of strain	37
2.1	Introduction	37
2.2	Deformation	38
2.3	Strain tensor in general coordinates	38
	2.3.1 Examples of strain in Cartesian coordinates	44
	2.3.2 Infinitesimal deformations	48
	2.3.3 Deformation and rigid body motion	49
2.4	Shell continuum	51

VI CONTENTS

	2.4.1 General assumptions	51
	2.4.2 Strain tensor	52
Chapter	3 – Analysis of stress	57
	Body and surface forces	57
	State of stress	58
	3.2.1 Stress vector components	61
	3.2.2 Stress tensor	61
3.3	Equations of equilibrium	64
	3.3.1 Translational equilibrium	64
	3.3.2 Rotational equilibrium	65
3.4	Principal stresses and principal directions	67
	3.4.1 Normal and tangential components	
	of the stress vector	69
	3.4.2 Mohr's circles	70
3.5	Stress quadric of Cauchy	77
3.6		
	of the stress tensor	78
3.7	Stress in shell continuums	79
	3.7.1 Shifters	79
	3.7.2 Contraction of surface forces	80
	3.7.3 Body forces and load density	84
	3.7.4 Eulero's equations	85
	3.7.5 Membrane state of stress	88
Chapter	4 – Equations of elasticity	89
	The material law	89
-	4.1.1 Generalized Hooke's law	90
4.2	The linear elastic problem	95
	4.2.1 Boundary value problem in terms of stresses	96
	4.2.2 Boundary value problem in terms	
	of displacements	98
4.3	Constitutive equation for shell continuums	100
Chapter	5 – Principle of Virtual Work	103
5.1	Virtual work	103
	5.1.1 A simple example	107
5.2	PVW, Compatibility conditions, Equilibrium	109
Chapter	6 – Energy principles and variational methods	111
6.1		111
	6.1.1 Superposition principle	116
	6.1.2 Uniqueness of the solution	117
	6.1.3 Theorem of reciprocity	119

•	,		٠
١	,	ı	ı

6.2	Variational methods	120
	6.2.1 Potential energy	120
	6.2.2 Complementary energy	122
	6.2.3 Theorems of Castigliano	124
	7 – Strength of materials	129
7.1	Introduction	129
	Maximum stress theory	130
, -	Maximum strain theory	131
	Beltrami's theory	132
	Von Mises' criterion	132
7.6	Criteria comparison	134
	7.6.1 Maximum stress	134
	7.6.2 Maximum strain	135
	7.6.3 Beltrami's criterion	136
	7.6.4 Von Mises' criterion	137
	7.6.5 Comparison	138
Part II. T	Theory of elastic beams	141
Chapter	8 – Saint-Venant's problem	143
8.1	Statement of the problem	143
	8.1.1 External and internal forces	148
	Four fundamental cases	153
8.3	Beam under axial force	154
	8.3.1 State of stress	154
	8.3.2 State of strain	155
	8.3.3 Displacement field	155
	8.3.4 Strain energy	157
8.4	Beam under terminal couples	158
	8.4.1 Introductive sketch	158
	8.4.2 State of stress	159
	8.4.3 State of strain	162
	8.4.4 Displacement field	164
	8.4.5 Strain energy	167
8.5		169
	8.5.1 Circular bar	169
	8.5.2 Cylindrical bar	172
	8.5.3 State of strain	176
	8.5.4 Displacement field	176
	8.5.5 Strain energy	178
	8.5.6 Torsion of tubular beams: Bredt's theory	181
8.6	Bending and shear	184

VIII CONTENTS

	0.6.1 Evrtown all formans	10.4
	8.6.1 External forces	184
	8.6.2 State of normal stress	185
	8.6.3 State of tangential stress: Jourawski's theory	187
	8.6.4 Tangential stress for symmetrical	
	cross-sections	189
	8.6.5 State of strain	193
	8.6.6 Total strain energy	197
	8.6.7 Rectangular cross-section	198
Part III.	Appendix	201
A – Appli	ications of the shell theory	203
A.1	Spherical dome	203
	A.1.1 Geometry	203
	A.1.2 Displacements and strains	204
	A.1.3 Equilibrium and constitutive law	205
A.2	Cylindrical shell	208
	A.2.1 Geometry	208
	A.2.2 Displacements and strains	209
	A.2.3 Equilibrium and constitutive law 209	
A.3	Hyperboloid of one sheet	211
	A.3.1 Geometry	211
	A.3.2 Equilibrium	215

List of figures

1.1	Contravariant and covariant bases related to a 2D	
	curvilinear coordinate system	14
1.2	Cylindrical coordinate system	18
1.3	Spherical coordinate system	20
1.4	Addition of two applied vectors	30
1.5	Subtraction of two applied vectors	31
1.6	Vector product for Cartesian applied vectors	32
2.1	Unstrained and strained body states	40
2.2	Measure of strain	42
2.3	Angular dilatation	45
2.4	Area dilatation	46
2.5	Two dimensional sketch of the displacement field for	
	Kirchho-Love shells	53
3.1	Body and surface forces	58
3.2	Body ${oldsymbol{\mathcal{V}}}$ being in an equilibrium state	59
3.3	Splitting of the continuous media ${oldsymbol{\mathcal{V}}}$	60
3.4	Stress vectors: the sketch of <i>Cauchy</i> 's theorem	62
3.5	Stress tensor components	63
3.6	Stress tensor components acting on an in nitesimal	
	volume element	64
3. 7	Plane (y, z) . Components of the stress tensor acting	
	on the volume element	66
3.8	Normal and tangential components of the stress	
	vector	69
3.9	Normal and tangential components of the stress vector	
	in two dimensions	71
3.10	Normal and tangential components of the stress vector	
	for in two dimensions	73
_	Graphical determination of principal directions	74
_	Mohr's circles	76
	Stress quadratic of Cauchy	77
3.14	Local bases in $G(\in)$ and in Q	81

X LIST OF FIGURES

4.1	Hooke's law	90
5.1	Forces and constraints acting on the continuous	103
5.2	Elemental volume element	106
5.3	Virtual deformation	106
5.4	Example	108
6.1	Density of strain energy in the case of axial state of	
	stress	114
6.2	The simplest application of Clapeyron's theorem	115
6.3	Forces and displacements acting on the body ${m {\cal V}}$ lying	
	in the equilibrium state	121
6.4	Concentrated loads acting on the body ${oldsymbol {\cal V}}$	125
6.5	Example of Castigliano's theorems	127
7.1	Rupture domain for the maximum stress criterion	135
7.2	Rupture domain for the maximum strain criterion	136
7.3	Elastic domain for Beltrami's criterion	137
7.4	Elastic domain for the Mises' criterion	138
8.1	Prototype of beam	145
8.2	Unit normal vectors on the bases of the cylinder	147
8.3	Equilibrated components of force and couple resultants	
	acting on the ends of the beam	150
8.4	Strained state of a beam subjected to an axial force	157
8.5	Strained state of a beam subjected to an axial force:	
	radial contraction	158
8.6	Beam under terminal couples	158
8.7	Projection of the couples and rotation axis	161
8.8	Neutral axis and flexural axis	163
	Circular bar under torsional couples	169
8.10	Rotation of a point <i>p</i> lying on a generic cross section	
	of the circular beam	170
8.11	The sub-domain A_c bounded by the curve c	181
8.12	Stress flux within a small region included by two	
	closed curves and two generic transversal sections	182
8.13	Stress resultants	183
8.14	Shear regions	187
	Beam splitting	188
_	Symmetrical cross section	190
	Maximum shear stress for symmetrical cross section	191
	σ_{3x} distribution for symmetrical cross sections	193
	Bending strain for an infinitesimal beam segment	194
	Shear strain for an infinitesimal beam segment	195

`	/	ı
7	۲	ı

8.21	Two contributions to the state of strain for a beam subjected to terminal forces	197
A.1	Hyperbolic coordinate system	212

Foreword

These Lecture Notes introduce the theoretical basics of solid mechanics to environmental engineering students. Born out of and supported by the European Project DEREC TEMPUS JEP Development of Environmental and Resources Engineering Curriculum, it collects the lectures held by the Authors during the course of Mechanic of Solids at the University of Florence, Degree of Environmental Engineering and Resources. Although the course is extended to basic structural engineering principles, such as mechanics, statics, kinematics and fundamental equations of beam structures, inertia, iso static and hyper static solution methods, these Lecture Notes reflect only the content of the lectures of continuum mechanics.

Several approaches are possible to the subject depending on the concern, either mathematically or physically oriented. The volume aims to provide a synthesis of both approaches, presenting in an organic whole the classical theory of solid mechanics and a more direct engineering approach. It is the Authors' opinion that a top-down learning process may offer to the engineering students those critical and autonomy tools necessary to gain awareness of that continuous learning process that is required; it characterizes the cultural and technical personality of an engineer. An ongoing learning is all the more necessary today, where the rapid development of powerful computers and computer solving methods (finite element methods, discrete volume methods, boundary methods, etc.) have opened up the way to new horizons that the classical approaches were only able to formulate. This fast and impressive growth of computer methods seems to be replacing the importance of gaining a consolidated knowledge of solid mechanics background. On the contrary, the Authors believe that only a conscious knowledge of theory can be that cultural instrument through which an engineer can really hope to control the use of computer methods. With this aim, the Reader addressed by this volume is mainly the undergraduate student in Engineering Schools: it is organized in eight Chapters: Chapter 1 proposes a synthesis of the basic concepts of mathematics and geometry that the readers need in the following chapters. Chapter 2 and Chapter 3 are devoted to the elementary framework of strain and stress in an elastic body. The concept of finite strain and Cauchy stress state is introduced, together with Mohr's representation of a general state of stress. Chapter 4 focuses on the classical law of linear elasticity. Chapter 5 deals with the Principle of Virtual Works. Chapter 6 treats the energy principles and provides a basic introduction to the variational methods.

XIV FOREWORD

Finally, Part I ends with a chapter introducing the notion of strength of materials. At the end of each chapter of the first part the basics of the tensor-based shell theory are also presented and then an application to some standard shell geometries is provided in appendix A.

The second part, Chapter 8, is dedicated to De Saint-Venant's problem where the classical beam theory is presented focusing on the four fundamental cases: beam under axial forces, terminal couples, torsion, bending and shear.

The volume, that consolidates the Lecture Notes prepared by the Authors for the second-year undergraduate students in environmental engineering, proposes a widening of the classical theories approached, giving a list of references used during its preparation as a possible suggestion to the Reader.

The Authors wish to express their heartfelt gratitude to professor Marco Modugno for the inspiring discussions and stimulating suggestions.

It is also our pleasure to thank Eng. Seymour Milton John Spence for kindly revising the English text.

The publication of this book has been possible thanks to the financial support of the European Commission (DEREC Tempus Project) and Ente Cassa di Risparmio di Firenze to whom the Authors are extremely grateful.

CLAUDIO BORRI, MICHELE BETTI, ENZO MARINO

$\begin{array}{c} \text{PART I} \\ \text{Theory of elasticity} \end{array}$

Chapter 1

Outline of linear algebra

This chapter briefly presents some preliminary mathematics necessary to understand continuum mechanics. To this end the basic concepts of linear algebra and tensor analysis will be introduced. At the end of the chapter an overview of the theory of surfaces will be exposed in order to make the reader familiar with some background required for the mechanics of shell continuums, even though the latter is not the key theme of this book.

This introduction is neither exhaustive nor complete; indeed for any further insight the reader is warmly recommended to refer to the main sources from which this summary has been derived: Modugno, [4] and [5]; Sokolnikoff, [1]; Green-Zerna, [3].

1.1 Vector spaces and linear mappings

1.1.1 Vector spaces

We define $vector\ space$ a set \bar{V} equipped with the following operations

$$+: \bar{V} \times \bar{V}: (\bar{u}, \bar{v}) \mapsto \bar{u} + \bar{v}$$
 (1.1)

$$\cdot : I\!\!R \times \bar{V} : (\lambda, \bar{v}) \mapsto \lambda \bar{v}. \tag{1.2}$$

Elements belonging to \bar{V} are named *vectors* and are characterized by the following properties

1.
$$\bar{u} + (\bar{v} + \bar{w}) = (\bar{u} + \bar{v}) + \bar{w} \quad \forall \bar{u}, \bar{v}, \bar{w} \in \bar{V}$$

$$2. \ \bar{u} + \bar{v} = \bar{v} + \bar{u} \qquad \forall \, \bar{u}, \bar{v} \in \bar{V}$$

$$3. \ \bar{u} + \bar{0} = \bar{u} \qquad \forall \, \bar{u} \in \bar{V}$$

4.
$$\forall \bar{u} \in \bar{V} \exists = -\bar{u} \in \bar{V} \text{ so that } \bar{u} + (-\bar{u}) = \bar{0}$$

where $\bar{0}$ is called null vector. Every vector space admits the existence of a subset

Every vector space admins the existence of a subset

$$\mathcal{B} = \{\bar{b}_1, \dots, \bar{b}_n\} \subset \bar{V}$$

called the *basis* of \bar{V} . Thus, each vector $\bar{v} \in \bar{V}$ can be univocally represented through the basis \mathcal{B} as follows

$$\bar{v} = v^i \bar{b}_i \qquad i = 1, \dots, n \tag{1.3}$$

where $v^i \in I\!\!R$ are the components of \bar{v} related to the basis \mathcal{B} and n is a number which defines the dimension of \bar{V} , namely the number of vectors in any basis of \bar{V} .

Notice that in equation (1.3) the Einstein's summation convention has been used. It is a notational convenience where any term in which an index appears twice will stand for the sum of all such terms as the index assumes all of a preassigned range of values, hence

$$\bar{v} = v^i \bar{b}_i = \sum_{i=1}^n v^i \bar{b}_i \tag{1.4}$$

1.1.2 Linear mappings

Functions between two vector spaces assume a crucial importance in linear algebra. In particular, we define a linear map as a linear transformation between two vector spaces that preserves the operations of vector addition and scalar multiplication.

Let \bar{V} and \bar{V}' be two vector spaces equipped with the bases

$$\mathcal{B} = \{\bar{b}_1, \dots, \bar{b}_n\}, \quad \mathcal{B}' = \{\bar{b}'_1, \dots, \bar{b}'_m\}$$

respectively.

We define a linear mapping as the transformation

$$f: \bar{V} \to \bar{V}', \quad \bar{v} \mapsto \bar{v}'$$
 (1.5)

if the two following conditions are satisfied

1.
$$f(\bar{u} + \bar{v}) = f(\bar{u}) + f(\bar{v}) \quad \forall \bar{u}, \bar{v} \in \bar{V} : \text{additivity};$$

2.
$$f(\lambda \bar{u}) = \lambda f(\bar{u})$$
 $\forall \bar{u} \in \bar{V} \in \lambda \in \mathbb{R}$: homogeneity.

(1.6)

The set of all linear maps from \bar{V} to \bar{V}' , denoted by $L(\bar{V}, \bar{V}')$, represents a $n \times m$ -dimensional vector space, where n and m are the dimensions of \bar{V} and \bar{V}' , respectively.

 $\{f: \bar{V} \rightarrow \bar{V}'\} =: L(\bar{V}, \bar{V}')$

$$2. (\lambda f)(\bar{u}) = \lambda f(\bar{u}), \quad \forall f \in L(\bar{V}, \bar{V}'); \, \bar{u} \in \bar{V}$$

1. $(f+g)(\bar{u}) = f(\bar{u}) + g(\bar{u}), \quad \forall f, g \in L(\bar{V}, \bar{V}'); \bar{u} \in \bar{V}$

For linear mappings the following properties hold

Matrix representation

Notions so far introduced allow us to assert that if f is a linear mapping from \bar{V} to \bar{V}' , then $f(\bar{v})$ is a vector in \bar{V}' . Consequently, by recalling the expression in components for \bar{v} , (1.3), we have

$$f(\bar{v}) = f(\bar{v})^i \bar{b}'_i \quad i = 1, \dots, m$$

$$(1.7)$$

and accounting for the fact that $\bar{v} = v^j \bar{b}_j$, with j = 1, ..., n, and by using the homogeneity property for linear mappings, the latter equation leads to

$$f(v^{j}\bar{b}_{j})^{i}\bar{b}'_{i} = v^{j}f(\bar{b}_{j})^{i}\bar{b}'_{i} \quad j = 1,\dots,n \quad i = 1,\dots,m.$$
 (1.8)

In a shorter form the components of $f(\bar{v})$ are then

$$(f(\bar{v}))^i = f_i^i v^j \tag{1.9}$$

so that the $m \times n$ -dimensional matrix $f_i^i = f(\bar{b}_i)^i$ is the matrix representation of the linear mapping f referred to the bases $\mathcal{B} \in \mathcal{B}'$.

Linear forms and the dual space

Linear forms are a special case of linear mappings. Let \overline{V} be a vector space and $\mathcal{B} = \{\bar{b}_i\}$ its basis. A linear form $\underline{\omega}$ is a linear transformation from \bar{V} to a scalar field

$$\underline{\omega}: \bar{V} \to \mathbb{R}$$
 (1.10)

(1.11)

Hence, we define \bar{V}^* as the set of linear forms from \bar{V} to $I\!\!R$

$$ar{V}^* =: \{\omega : ar{V} \to I\!\!R\} =: L(ar{V}, I\!\!R)$$

(1.14)

(1.15)

(1.17)

 \bar{V}^* and \bar{V} have the same dimension.

The dual space \bar{V}^* admits a basis $\mathcal{B}^* = \{\beta^i\}$ whose elements are linear forms operating as follows

$$\underline{\beta}^{i}(\bar{b}_{j}) = \delta_{j}^{i} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
 (1.12)

By the definition, we can state that the element β^i belonging to \mathcal{B}^* , applied to the vector \bar{u} , yields a scalar that is the *i*-th component of \bar{u} . In fact we write

$$\underline{\beta}^{i}(\bar{u}) = \underline{\beta}^{i}(u^{j}\bar{b}_{j}) = u^{j}\underline{\beta}^{i}(\bar{b}_{j}) = u^{j}\delta_{j}^{i} = u^{i}$$

$$(1.13)$$

We highlight that, as done for vectors, each linear form, chosen the n-dimensional basis \mathcal{B}^* , can be written in components as follows

 $\omega = \omega_i \beta^j \quad j = 1, \dots, n$

Bilinear forms

We can define a bilinear form f as a mapping

$$f: \bar{V} \times \bar{V} \to IR, \quad (\bar{v}, \bar{v}') \mapsto \lambda$$

where $\bar{v}, \bar{v}' \in \bar{V}$ and $\lambda \in \mathbb{R}$, and such that it is linear in each argument separately. That is

- 1. $f(\bar{v} + \bar{w}, \bar{v}') = f(\bar{v}, \bar{v}') + f(\bar{w}, \bar{v}');$
- 2. $f(\bar{v}, \bar{v}' + \bar{w}) = f(\bar{v}, \bar{v}') + f(\bar{v}', \bar{w});$
- 3. $f(\lambda \bar{v}, \bar{v}) = f(\bar{v}, \lambda \bar{v}) = \lambda f(\bar{v}, \bar{v}')$.

$$\forall f \in L(\bar{V} \times \bar{V}, \mathbb{R}); \bar{v}, \bar{v}', \bar{w} \in \bar{V}; \lambda \in \mathbb{R}.$$

Endomorphisms

Frequently in the field of solid mechanics we will meet special linear mappings from a vector space into itself, i.e. $f \in L(V, V)$. These are defined endomorphisms

$$f: \bar{V} \to \bar{V}, \quad \bar{v} \mapsto \bar{v}' \qquad \bar{v}, \bar{v}' \in \bar{V}$$
 (1.16)

The set of linear mappings from \bar{V} into itself forms a $n \times n$ dimensional vector space, where n is the dimension of \bar{V} .

dimensional vector space, where
$$n$$
 is the dimension of \bar{V} .
$$\{f: \bar{V} \to \bar{V}\} =: L(\bar{V}, \bar{V}) =: End(\bar{V}) \tag{1.17}$$

(1.20)

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)

(1.28)

Change of basis for endomorphisms Let \mathcal{B} be a fixed basis for \overline{V} , we are interested in evaluating how

the endomorphism $f \in End(\bar{V})$ changes when passing to a new basis \mathcal{B}' of \bar{V} . The following transformation rules are established

basis
$$\mathcal{B}'$$
 of V . The following transformation rules are established
$$\bar{b}_i = a_i'^h \bar{b}_h' \tag{1.18}$$

$$\bar{b}_h' = a_i^J \bar{b}_i \tag{1.19}$$

that, by replacing (1.19) into (1.18), yield

 $\bar{b}_i = a_i^{\prime h} a_b^k \bar{b}_k$

and so $\left(a_i^{\prime h} a_h^k - \delta_i^k\right) \bar{b}_k = 0 \Rightarrow a_i^{\prime h} a_h^k = \delta_i^k$

(1.21)therefore, each change of basis for \bar{V} is characterized by a square

invertible matrix $n \times n$.

Likewise vectors, the following rules hold for dual elements

 $\beta^i = a_h^i \beta'^h$ $\beta'^i = a_h^{\prime i} \beta^h$

When both bases are orthogonal, then the transformation matrices are also orthogonal, that is

 $a_i^{\prime h} = a_b^i$

where $a_i^{\prime h} = \left(a_i^h\right)^{-1}$, and

 $a_k^h = \cos\left(\bar{b}_h, \bar{b}_k'\right)$

 $a_i^{\prime i} = \cos\left(\bar{b}_i^{\prime}, \bar{b}_i\right)$

The change of basis implies a change of the vector components. In fact we have $v^k = a_i^k v^{\prime j}$ (1.27)

 $v^{\prime k} = a_i^{\prime k} v^j$

(1.29)

(1.31)

The proof of the above equations can be easily provided. For instance, for equation (1.27) we have that a vector \bar{v} can be expressed with respect to two basis \mathcal{B} and \mathcal{B}' as $\bar{v} = v^i \bar{b}_i = v'^j \bar{b}'_j$. Hence

$$v^{\prime j}a_j^k\bar{b}_k - v^i\delta_i^k\bar{b}_k = 0 \Rightarrow \left(v^{\prime j}a_j^k - v^i\delta_i^k\right)\bar{b}_k = 0 \tag{1.30}$$

 $v^i \bar{b}_i = v'^j a_i^k \bar{b}_k \Rightarrow v'^j a_i^k \bar{b}_k - v^i \bar{b}_i = 0 \Rightarrow$

finally, by putting zero the coefficient in brackets, we obtain relation (1.27).

 $v_k = a_k^{\prime i} v_i^{\prime}$

Covector components change by the the following rules

$$v_k' = a_k^i v_i \tag{1.32}$$

Furthermore, recalling equation (1.9), via some manipulations, we get the rule to transform the endomorphism f, that is¹

we get the rule to transform the endomorphism
$$f$$
, that is¹

$$f_i^i = a_h^i f_k'^h a_i'^k \tag{1.33}$$

and

$$f_j^{\prime i} = a_h^{\prime i} f_k^h a_j^k \tag{1.34}$$
 Similar relationships can be found for higher order matrices, for

Similar relationships can be found for higher order matrices, for instance for a mixed fourth-order tensor we have

$$f_{bk}^{ij} = a_l^i a_m^j f_{no}^{\prime lm} a_h^{\prime n} a_k^{\prime o} \tag{1.35}$$

and likewise

$$f_{hk}^{\prime ij} = a_l^{\prime i} a_m^{\prime j} f_{no}^{lm} a_h^n a_k^o \tag{1.36}$$

1.2 Euclidean spaces

A Euclidean vector space is a space which admits a Euclidean metric, that is a structure inducing some special relationships between distances and angles. In particular, fixed a Cartesian coordinate system (that will be better defined later on) and its standard basis, in a Euclidean space the distance between two points can be computed by means of *Pitagora*'s formula.

¹Often, within an engineering context, it is convenient to represent equations (1.33) and (1.34) in the matrix form, such as $F' = R^T F R$ and $F = R F' R^T$, where R^T and R are nothing but $a_j^{\prime i}$ and a_k^h , respectively.