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Foreword

These Lecture Notes introduce the theoretical basics of solid mechanics
to environmental engineering students. Born out of and supported by the
European Project DEREC TEMPUS JEP Development of Environmen-
tal and Resources Engineering Curriculum, it collects the lectures held by
the Authors during the course of Mechanic of Solids at the University of
Florence, Degree of Environmental Engineering and Resources. Although
the course is extended to basic structural engineering principles, such as
mechanics, statics, kinematics and fundamental equations of beam struc-
tures, inertia, iso static and hyper static solution methods, these Lecture
Notes re�ect only the content of the lectures of continuum mechanics.

Several approaches are possible to the subject depending on the con-
cern, either mathematically or physically oriented. The volume aims to
provide a synthesis of both approaches, presenting in an organic whole
the classical theory of solid mechanics and a more direct engineering ap-
proach. It is the Authors' opinion that a top�down learning process may
o�er to the engineering students those critical and autonomy tools neces-
sary to gain awareness of that continuous learning process that is required;
it characterizes the cultural and technical personality of an engineer. An
ongoing learning is all the more necessary today, where the rapid develop-
ment of powerful computers and computer solving methods (�nite element
methods, discrete volume methods, boundary methods, etc.) have opened
up the way to new horizons that the classical approaches were only able to
formulate. This fast and impressive growth of computer methods seems to
be replacing the importance of gaining a consolidated knowledge of solid
mechanics background. On the contrary, the Authors believe that only
a conscious knowledge of theory can be that cultural instrument through
which an engineer can really hope to control the use of computer methods.
With this aim, the Reader addressed by this volume is mainly the under-
graduate student in Engineering Schools: it is organized in eight Chapters:
Chapter 1 proposes a synthesis of the basic concepts of mathematics and
geometry that the readers need in the following chapters. Chapter 2 and
Chapter 3 are devoted to the elementary framework of strain and stress
in an elastic body. The concept of �nite strain and Cauchy stress state
is introduced, together with Mohr's representation of a general state of
stress. Chapter 4 focuses on the classical law of linear elasticity. Chapter
5 deals with the Principle of Virtual Works. Chapter 6 treats the energy
principles and provides a basic introduction to the variational methods.

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press



Finally, Part I ends with a chapter introducing the notion of strength of
materials. At the end of each chapter of the �rst part the basics of the
tensor�based shell theory are also presented and then an application to
some standard shell geometries is provided in appendix A.

The second part, Chapter 8, is dedicated to De Saint�Venant's problem
where the classical beam theory is presented focusing on the four funda-
mental cases: beam under axial forces, terminal couples, torsion, bending
and shear.

The volume, that consolidates the Lecture Notes prepared by the Au-
thors for the second�year undergraduate students in environmental engi-
neering, proposes a widening of the classical theories approached, giving
a list of references used during its preparation as a possible suggestion to
the Reader.

The Authors wish to express their heartfelt gratitude to professor
Marco Modugno for the inspiring discussions and stimulating suggestions.

It is also our pleasure to thank Eng. Seymour Milton John Spence for
kindly revising the English text.

The publication of this book has been possible thanks to the �nan-
cial support of the European Commission (DEREC Tempus Project) and
Ente Cassa di Risparmio di Firenze to whom the Authors are extremely
grateful.

Claudio Borri, Michele Betti, Enzo Marino

XIV 	 	 forEword
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Theory of elasticity
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Chapter 1

Outline of linear algebra

This chapter brie�y presents some preliminary mathematics necessary
to understand continuum mechanics. To this end the basic concepts of
linear algebra and tensor analysis will be introduced. At the end of the
chapter an overview of the theory of surfaces will be exposed in order to
make the reader familiar with some background required for the mechanics
of shell continuums, even though the latter is not the key theme of this
book.

This introduction is neither exhaustive nor complete; indeed for any

further insight the reader is warmly recommended to refer to the main

sources from which this summary has been derived: Modugno, [4] and

[5]; Sokolniko�, [1]; Green-Zerna, [3].

1.1 Vector spaces and linear mappings

1.1.1 Vector spaces

We de�ne vector space a set V̄ equipped with the following op-
erations

+ : V̄ × V̄ : (ū, v̄) 7→ ū+ v̄ (1.1)

· : IR× V̄ : (λ, v̄) 7→ λv̄. (1.2)

Elements belonging to V̄ are named vectors and are character-
ized by the following properties

1. ū+ (v̄ + w̄) = (ū+ v̄) + w̄ ∀ ū, v̄, w̄ ∈ V̄

2. ū+ v̄ = v̄ + ū ∀ ū, v̄ ∈ V̄

3. ū+ 0̄ = ū ∀ ū ∈ V̄

4. ∀ ū ∈ V̄ ∃ = −ū ∈ V̄ so that ū+ (−ū) = 0̄
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4 OUTLINE OF LINEAR ALGEBRA

where 0̄ is called null vector.

Every vector space admits the existence of a subset

B = {b̄1, . . . , b̄n} ⊂ V̄

called the basis of V̄ . Thus, each vector v̄ ∈ V̄ can be univocally
represented through the basis B as follows

v̄ = vib̄i i = 1, . . . , n (1.3)

where vi ∈ IR are the components of v̄ related to the basis B and n
is a number which de�nes the dimension of V̄ , namely the number
of vectors in any basis of V̄ .

Notice that in equation (1.3) the Einstein's summation conven-
tion has been used. It is a notational convenience where any term
in which an index appears twice will stand for the sum of all such
terms as the index assumes all of a preassigned range of values,
hence

v̄ = vib̄i =
n∑
i=1

vib̄i (1.4)

1.1.2 Linear mappings

Functions between two vector spaces assume a crucial impor-
tance in linear algebra. In particular, we de�ne a linear map as a
linear transformation between two vector spaces that preserves the
operations of vector addition and scalar multiplication.

Let V̄ and V̄ ′ be two vector spaces equipped with the bases

B = {b̄1, . . . , b̄n}, B′ = {b̄′1, . . . , b̄′m}

respectively.

We de�ne a linear mapping as the transformation

f : V̄ → V̄ ′, v̄ 7→ v̄′ (1.5)

if the two following conditions are satis�ed

1. f (ū+ v̄) = f (ū) + f (v̄) ∀ ū, v̄ ∈ V̄ : additivity;

2. f (λū) = λf (ū) ∀ ū ∈ V̄ e λ ∈ IR : homogeneity.



LECTURES ON SOLID MECHANICS 5

The set of all linear maps from V̄ to V̄ ′, denoted by L
(
V̄ , V̄ ′

)
,

represents a n ×m�dimensional vector space, where n and m are
the dimensions of V̄ and V̄ ′, respectively.

{f : V̄ → V̄ ′} =: L
(
V̄ , V̄ ′

)
(1.6)

For linear mappings the following properties hold

1. (f + g) (ū) = f (ū) + g (ū) , ∀f, g ∈ L
(
V̄ , V̄ ′

)
; ū ∈ V̄

2. (λf) (ū) = λf (ū) , ∀f ∈ L
(
V̄ , V̄ ′

)
; ū ∈ V̄

Matrix representation

Notions so far introduced allow us to assert that if f is a linear
mapping from V̄ to V̄ ′, then f(v̄) is a vector in V̄ ′. Consequently,
by recalling the expression in components for v̄, (1.3), we have

f (v̄) = f (v̄)i b̄′i i = 1, . . . ,m (1.7)

and accounting for the fact that v̄ = vj b̄j , with j = 1, . . . , n, and
by using the homogeneity property for linear mappings, the latter
equation leads to

f
(
vj b̄j

)i
b̄′i = vjf

(
b̄j
)i
b̄′i j = 1, . . . , n i = 1, . . . ,m. (1.8)

In a shorter form the components of f (v̄) are then

(f (v̄))i = f ijv
j (1.9)

so that the m × n�dimensional matrix f ij = f
(
b̄j
)i

is the matrix
representation of the linear mapping f referred to the bases B e B′.

Linear forms and the dual space

Linear forms are a special case of linear mappings. Let V̄ be
a vector space and B = {b̄i} its basis. A linear form ω

	
is a linear

transformation from V̄ to a scalar �eld

ω
	

: V̄ → IR (1.10)

Hence, we de�ne V̄ ∗ as the set of linear forms from V̄ to IR

V̄ ∗ =: {ω : V̄ → IR} =: L
(
V̄ , IR

)
(1.11)
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V̄ ∗ and V̄ have the same dimension.
The dual space V̄ ∗ admits a basis B∗ = {β

	

i} whose elements
are linear forms operating as follows

β
	

i
(
b̄j
)

= δij =
{

1 i = j
0 i 6= j

(1.12)

By the de�nition, we can state that the element β
	

i belonging to
B∗, applied to the vector ū, yields a scalar that is the i�th compo-
nent of ū. In fact we write

β
	

i (ū) = β
	

i
(
uj b̄j

)
= ujβ

	

i
(
b̄j
)

= ujδij = ui (1.13)

We highlight that, as done for vectors, each linear form, chosen
the n�dimensional basis B∗, can be written in components as follows

ω
	

= ωjβ
	

j j = 1, . . . , n (1.14)

Bilinear forms

We can de�ne a bilinear form f
	
as a mapping

f
	

: V̄ × V̄ → IR,
(
v̄, v̄′

)
7→ λ (1.15)

where v̄, v̄′ ∈ V̄ and λ ∈ IR, and such that it is linear in each
argument separately. That is

1. f
	

(v̄ + w̄, v̄′) = f
	

(v̄, v̄′) + f
	

(w̄, v̄′);

2. f
	

(v̄, v̄′ + w̄) = f
	

(v̄, v̄′) + f
	

(v̄′, w̄);

3. f
	

(λv̄, v̄) = f
	

(v̄, λv̄) = λf
	

(v̄, v̄′).

∀f ∈ L
(
V̄ × V̄ , IR

)
; v̄, v̄′, w̄ ∈ V̄ ; λ ∈ IR.

Endomorphisms

Frequently in the �eld of solid mechanics we will meet special
linear mappings from a vector space into itself, i.e. f ∈ L

(
V̄ , V̄

)
.

These are de�ned endomorphisms

f : V̄ → V̄ , v̄ 7→ v̄′ v̄, v̄′ ∈ V̄ (1.16)

The set of linear mappings from V̄ into itself forms a n × n�
dimensional vector space, where n is the dimension of V̄ .

{f : V̄ → V̄ } =: L
(
V̄ , V̄

)
=: End

(
V̄
)

(1.17)
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Change of basis for endomorphisms

Let B be a �xed basis for V̄ , we are interested in evaluating how
the endomorphism f ∈ End

(
V̄
)
changes when passing to a new

basis B′ of V̄ . The following transformation rules are established

b̄i = a′hi b̄
′
h (1.18)

b̄′h = ajhb̄j (1.19)

that, by replacing (1.19) into (1.18), yield

b̄i = a′hi a
k
hb̄k (1.20)

and so (
a′hi a

k
h − δki

)
b̄k = 0⇒ a′hi a

k
h = δki (1.21)

therefore, each change of basis for V̄ is characterized by a square
invertible matrix n× n.

Likewise vectors, the following rules hold for dual elements

β
	

i = aihβ
	

′h (1.22)

β
	

′i = a′ihβ
	

h (1.23)

When both bases are orthogonal, then the transformation ma-
trices are also orthogonal, that is

a′hi = aih (1.24)

where a′hi =
(
ahi
)−1

, and

a′ij = cos
(
b̄′i, b̄j

)
(1.25)

ahk = cos
(
b̄h, b̄

′
k

)
(1.26)

The change of basis implies a change of the vector components.
In fact we have

vk = akj v
′j (1.27)

v′k = a′kj v
j (1.28)
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The proof of the above equations can be easily provided. For in-
stance, for equation (1.27) we have that a vector v̄ can be expressed
with respect to two basis B and B′ as v̄ = vib̄i = v′j b̄′j . Hence

vib̄i = v′jakj b̄k ⇒ v′jakj b̄k − vib̄i = 0⇒ (1.29)

v′jakj b̄k − viδki b̄k = 0⇒
(
v′jakj − viδki

)
b̄k = 0 (1.30)

�nally, by putting zero the coe�cient in brackets, we obtain relation
(1.27).

Covector components change by the the following rules

vk = a′ikv
′
i (1.31)

v′k = aikvi (1.32)

Furthermore, recalling equation (1.9), via some manipulations,
we get the rule to transform the endomorphism f , that is1

f ij = aihf
′h
k a
′k
j (1.33)

and
f ′ij = a′ihf

h
k a

k
j (1.34)

Similar relationships can be found for higher order matrices, for
instance for a mixed fourth�order tensor we have

f ijhk = aila
j
mf
′lm
no a

′n
h a
′o
k (1.35)

and likewise

f ′ijhk = a′il a
′j
mf

lm
no a

n
ha

o
k (1.36)

1.2 Euclidean spaces

A Euclidean vector space is a space which admits a Euclidean
metric, that is a structure inducing some special relationships be-
tween distances and angles. In particular, �xed a Cartesian coordi-
nate system (that will be better de�ned later on) and its standard
basis, in a Euclidean space the distance between two points can be
computed by means of Pitagora's formula.

1Often, within an engineering context, it is convenient to represent equations
(1.33) and (1.34) in the matrix form, such as F ′ = RTFR and F = RF ′RT ,
where RT and R are nothing but a′ij and ahk , respectively.


